P.101 Involvement of the genes related to lysosomal storage disorders in GBA-associated Parkinson's disease

2021 ◽  
Vol 44 ◽  
pp. S1-S2
Author(s):  
A. Bezrukova ◽  
D. Bogdanova ◽  
K. Basharova ◽  
K. Senkevich ◽  
E. Gracheva ◽  
...  
2020 ◽  
Vol 35 (12) ◽  
pp. 2150-2155
Author(s):  
Shani Blumenreich ◽  
Bethan J. Jenkins ◽  
Or B. Barav ◽  
Ivan Milenkovic ◽  
Anthony H. Futerman

Brain ◽  
2020 ◽  
Vol 143 (4) ◽  
pp. 1190-1205 ◽  
Author(s):  
Yutaka Oji ◽  
Taku Hatano ◽  
Shin-Ichi Ueno ◽  
Manabu Funayama ◽  
Kei-ichi Ishikawa ◽  
...  

Abstract Recently, the genetic variability in lysosomal storage disorders has been implicated in the pathogenesis of Parkinson’s disease. Here, we found that variants in prosaposin (PSAP), a rare causative gene of various types of lysosomal storage disorders, are linked to Parkinson’s disease. Genetic mutation screening revealed three pathogenic mutations in the saposin D domain of PSAP from three families with autosomal dominant Parkinson’s disease. Whole-exome sequencing revealed no other variants in previously identified Parkinson’s disease-causing or lysosomal storage disorder-causing genes. A case-control association study found two variants in the intronic regions of the PSAP saposin D domain (rs4747203 and rs885828) in sporadic Parkinson’s disease had significantly higher allele frequencies in a combined cohort of Japan and Taiwan. We found the abnormal accumulation of autophagic vacuoles, impaired autophagic flux, altered intracellular localization of prosaposin, and an aggregation of α-synuclein in patient-derived skin fibroblasts or induced pluripotent stem cell-derived dopaminergic neurons. In mice, a Psap saposin D mutation caused progressive motor decline and dopaminergic neurodegeneration. Our data provide novel genetic evidence for the involvement of the PSAP saposin D domain in Parkinson’s disease.


2019 ◽  
Vol 53 (1) ◽  
pp. 24-31
Author(s):  
M. M. Rudenok ◽  
A. Kh. Alieva ◽  
M. A. Nikolaev ◽  
A. A. Kolacheva ◽  
M. V. Ugryumov ◽  
...  

2011 ◽  
Vol 26 (9) ◽  
pp. 1593-1604 ◽  
Author(s):  
Tamar Shachar ◽  
Christophe Lo Bianco ◽  
Alessandra Recchia ◽  
Christoph Wiessner ◽  
Annick Raas-Rothschild ◽  
...  

Author(s):  
Kerri-Lee Wallom ◽  
María E. Fernández-Suárez ◽  
David A. Priestman ◽  
Danielle te Vruchte ◽  
Mylene Huebecker ◽  
...  

AbstractIt is well established that lysosomal glucocerebrosidase gene (GBA) variants are a risk factor for Parkinson’s disease (PD), with increasing evidence suggesting a loss of function mechanism. One question raised by this genetic association is whether variants of genes involved in other aspects of sphingolipid metabolism are also associated with PD. Recent studies in sporadic PD have identified variants in multiple genes linked to diseases of glycosphingolipid (GSL) metabolism to be associated with PD. GSL biosynthesis is a complex pathway involving the coordinated action of multiple enzymes in the Golgi apparatus. GSL catabolism takes place in the lysosome and is dependent on the action of multiple acid hydrolases specific for certain substrates and glycan linkages. The finding that variants in multiple GSL catabolic genes are over-represented in PD in a heterozygous state highlights the importance of GSLs in the healthy brain and how lipid imbalances and lysosomal dysfunction are associated with normal ageing and neurodegenerative diseases. In this article we will explore the link between lysosomal storage disorders and PD, the GSL changes seen in both normal ageing, lysosomal storage disorders (LSDs) and PD and the mechanisms by which these changes can affect neurodegeneration.


Author(s):  
Daniel Erskine ◽  
David Koss ◽  
Viktor I. Korolchuk ◽  
Tiago F. Outeiro ◽  
Johannes Attems ◽  
...  

AbstractAccumulation of the protein α-synuclein into insoluble intracellular deposits termed Lewy bodies (LBs) is the characteristic neuropathological feature of LB diseases, such as Parkinson’s disease (PD), Parkinson’s disease dementia (PDD) and dementia with LB (DLB). α-Synuclein aggregation is thought to be a critical pathogenic event in the aetiology of LB disease, based on genetic analyses, fundamental studies using model systems, and the observation of LB pathology in post-mortem tissue. However, some monogenic disorders not traditionally characterised as synucleinopathies, such as lysosomal storage disorders, iron storage disorders and mitochondrial diseases, appear disproportionately vulnerable to the deposition of LBs, perhaps suggesting the process of LB formation may be a result of processes perturbed as a result of these conditions. The present review discusses biological pathways common to monogenic disorders associated with LB formation, identifying catabolic processes, particularly related to lipid homeostasis, autophagy and mitochondrial function, as processes that could contribute to LB formation. These findings are discussed in the context of known mediators of α-synuclein aggregation, highlighting the potential influence of impairments to these processes in the aetiology of LB formation.


Sign in / Sign up

Export Citation Format

Share Document