catabolic genes
Recently Published Documents


TOTAL DOCUMENTS

327
(FIVE YEARS 101)

H-INDEX

52
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Evan M.F. Shepherdson ◽  
Tina Netzker ◽  
Yordan Stoyanov ◽  
Marie A. Elliot

Exploration is a recently discovered mode of growth and behaviour exhibited by some Streptomyces species that is distinct from their classical sporulating life cycle. While much has been uncovered regarding initiating environmental conditions and the phenotypic outcomes of exploratory growth, how this process is coordinated at a genetic level remains unclear. We used RNA-sequencing to survey global changes in the transcriptional profile of exploring cultures over time in the model organism Streptomyces venezuelae. Transcriptomic analyses revealed widespread changes in gene expression impacting diverse cellular functions. Investigations into differentially expressed regulatory elements revealed specific groups of regulatory factors to be impacted, including the expression of several extracytoplasmic function (ECF) sigma factors, second messenger signalling pathways, and members of the whiB-like (wbl) family of transcription factors. Dramatic changes were observed among primary metabolic pathways, especially among respiration-associated genes and the oxidative stress response; enzyme assays confirmed that exploring cultures exhibit an enhanced oxidative stress response compared with classically growing cultures. Changes in expression of the glycerol catabolic genes in S. venezuelae led to the discovery that glycerol supplementation of the growth medium promotes a dramatic acceleration of exploration. This effect appears to be unique to glycerol as an alternative carbon source and this response is broadly conserved across other exploration-competent species.


2021 ◽  
Vol 9 (12) ◽  
pp. 2462
Author(s):  
Jun Hirose ◽  
Takahito Watanabe ◽  
Taiki Futagami ◽  
Hidehiko Fujihara ◽  
Nobutada Kimura ◽  
...  

Integrative and conjugative elements (ICEs) are chromosomally integrated self-transmissible mobile genetic elements. Although some ICEs are known to carry genes for the degradation o-f aromatic compounds, information on their genetic features is limited. We identified a new member of the ICEclc family carrying biphenyl catabolic bph genes and salicylic acid catabolic sal genes from the PCB-degrading strain Pseudomonas stutzeri KF716. The 117-kb ICEbph-salKF716 contains common core regions exhibiting homology with those of degradative ICEclc from P. knackmussii B13 and ICEXTD from Azoarcus sp. CIB. A comparison of the gene loci collected from the public database revealed that several putative ICEs from P. putida B6-2, P, alcaliphila JAB1, P. stutzeri AN10, and P. stutzeri 2A20 had highly conserved core regions with those of ICEbph-salKF716, along with the variable region that encodes the catabolic genes for biphenyl, naphthalene, toluene, or phenol. These data indicate that this type of ICE subfamily is ubiquitously distributed within aromatic compound-degrading bacteria. ICEbph-salKF716 was transferred from P. stutzeri KF716 to P. aeruginosa PAO1 via a circular extrachromosomal intermediate form. In this study, we describe the structure and genetic features of ICEbph-salKF716 compared to other catabolic ICEs.


Author(s):  
Kerri-Lee Wallom ◽  
María E. Fernández-Suárez ◽  
David A. Priestman ◽  
Danielle te Vruchte ◽  
Mylene Huebecker ◽  
...  

AbstractIt is well established that lysosomal glucocerebrosidase gene (GBA) variants are a risk factor for Parkinson’s disease (PD), with increasing evidence suggesting a loss of function mechanism. One question raised by this genetic association is whether variants of genes involved in other aspects of sphingolipid metabolism are also associated with PD. Recent studies in sporadic PD have identified variants in multiple genes linked to diseases of glycosphingolipid (GSL) metabolism to be associated with PD. GSL biosynthesis is a complex pathway involving the coordinated action of multiple enzymes in the Golgi apparatus. GSL catabolism takes place in the lysosome and is dependent on the action of multiple acid hydrolases specific for certain substrates and glycan linkages. The finding that variants in multiple GSL catabolic genes are over-represented in PD in a heterozygous state highlights the importance of GSLs in the healthy brain and how lipid imbalances and lysosomal dysfunction are associated with normal ageing and neurodegenerative diseases. In this article we will explore the link between lysosomal storage disorders and PD, the GSL changes seen in both normal ageing, lysosomal storage disorders (LSDs) and PD and the mechanisms by which these changes can affect neurodegeneration.


2021 ◽  
Vol 2 (6) ◽  
pp. 1-5
Author(s):  
R. E. Aso ◽  
C. Hammuel ◽  
M. Daji ◽  
J. Briska

Glyphosate-based herbicides are often used for the control of weeds grown on agricultural fields or farms. Different health problems have been reported to be associated with the use of glyphosate-based herbicides mainly due to their toxicity level. Thus, finding glyphosate utilizing microorganisms to remediate the glyphosate-based herbicides in the environment is crucial. The culture conditions for maximum utilization of glyphosate by bacterial isolates, Stenotrophomonas maltophilia, Bacillus cereus and Enterobacter aerogenes previously isolated from Ugini stream close to corn fields treated with glyphosate-based herbicide at Ofagbe, Delta State, Nigeria were optimized using mineral salt medium containing glyphosate as carbon source. The varied culture parameters assessed were temperature (30, 37 and 40 oC), pH (5, 6, 7, 8 and 9), initial glyphosate concentration (1, 3, 5, 7 and 9 g/L) and incubation time (2-14 days). Optical density (OD) at 560 nm of the culture was used to estimate cell growth or cell load of the glyphosate utilizing bacteria strains at every 2 days for 14 days. The following optimal conditions were determined: initial pH 9.0, incubation temperature 30 °C, initial concentration of glyphosate (1g/L) and incubation time of 12 days. Of the isolates on the medium containing the herbicide as sole carbon and energy source, Bacillus cereus showed the highest growth level (OD average, 0.127, pH average, 6.26. This was followed by Stenotrophomonas maltophilia (OD average = 0.114, pH average = 6.44) and Enterobacter aerogenes (OD average = 0.100, pH average, 6.56). At the increased of glyphosate in the medium there was decreased in growth of the bacteria. Bacillus cereus, Stenotrophomonas maltophilia and Enterobacter aerogenes indicated a high capacity to be able to degrade glyphosate. It is therefore concluded that the bacteria employed in this research can be recommended for bioremediation of environments contaminated with this chemical and further research should conducted to ascertain the catabolic genes present in these individual glyphosate degrading bacteria.


2021 ◽  
Vol 12 ◽  
Author(s):  
Rakesh K. Upadhyay ◽  
Tahira Fatima ◽  
Avtar K. Handa ◽  
Autar K. Mattoo

Polyamines have been implicated in ameliorating the detrimental effects of drought and saline conditions on plant growth and development. The independent impact of these two abiotic stresses on polyamine (PA) biosynthesis, catabolism, and homeostasis, as well as on their transcript abundance in tomato leaves, is presented here. We show that the total levels of putrescine (PUT), spermidine (SPD), and spermine (SPM) increase up to 72 h during drought and up to 48 h during salinity stress before their precipitable drop thereafter. Thus, tomato plants maintain survivability to drought as well as salinity stress for up to 3 and 2 days, respectively. Independent multivariant analyses of drought and salinity stress kinetic data separately showed a closer association with levels of free, conjugated, and bound forms of SPD and SPM, but not with free or bound PUT. However, combined multivariant analyses showed a closer association of free SPD, conjugated SPD, and bound SPD with both stresses; SPD-bound and SPM conjugated with drought; and free SPM and conjugated PUT with salinity stress, respectively. PA biosynthesis genes, ARG1, SPDS1, and SAMDc3, segregated with drought and SPDS2 with salinity stress. PA catabolic genes CuAO4-like and PAO4 were associated with drought and salinity stresses, respectively, suggesting differential involvement of PA biosynthesis and catabolic genes in drought and salinity stresses. Pearson correlation indicated mostly positive correlations between the levels of free, conjugated, and bound forms of PUT, SPD, and SPM under drought and salinity stress. However, negative correlations were mostly seen between the levels of various forms of the PAs and their biosynthesis/catabolic genes. Levels of different PA forms had a twofold higher negative correlation during drought as compared to salinity stress (66 vs. 32) and with transcript levels of PA biosynthesis and catabolic genes. Transcripts of light-harvesting chlorophyll a/b-binding genes were generally positively associated with different forms of PAs but negatively to carbon flow genes. Most of the PA biosynthesis genes were coordinately regulated under both stresses. Collectively, these results indicate that PAs are distinctly regulated under drought and salinity stress with different but specific homologs of PA biosynthesis and catabolic genes contributing to the accumulation of free, conjugated, and bound forms of PAs.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yunhui Zhang ◽  
Kai Sun ◽  
Chuang Sun ◽  
Xiaochong Shi ◽  
Jonathan D. Todd ◽  
...  

Dimethylsulfoniopropionate (DMSP) is one of Earth’s most abundant organosulfur molecules, and bacteria in marine sediments have been considered significant producers. However, the vertical profiles of DMSP content and DMSP-producing bacteria in subseafloor sediment have not been described. Here, we used culture-dependent and -independent methods to investigate microbial DMSP production and cycling potential in South China Sea (SCS) sediment. The DMSP content of SCS sediment decreased from 11.25 to 20.90 nmol g–1 in the surface to 0.56–2.08 nmol g–1 in the bottom layers of 8-m-deep subseafloor sediment cores (n = 10). Very few eukaryotic plastid sequences were detected in the sediment, supporting bacteria and not algae as important sediment DMSP producers. Known bacterial DMSP biosynthesis genes (dsyB and mmtN) were only predicted to be in 0.0007–0.0195% of sediment bacteria, but novel DMSP-producing isolates with potentially unknown DMSP synthesis genes and/or pathways were identified in these sediments, including Marinobacter (Gammaproteobacteria) and Erythrobacter (Alphaproteobacteria) sp. The abundance of bacteria with the potential to produce DMSP decreased with sediment depth and was extremely low at 690 cm. Furthermore, distinct DMSP-producing bacterial groups existed in surface and subseafloor sediment samples, and their abundance increased when samples were incubated under conditions known to enrich for DMSP-producing bacteria. Bacterial DMSP catabolic genes were also most abundant in the surface oxic sediments with high DMSP concentrations. This study extends the current knowledge of bacterial DMSP biosynthesis in marine sediments and implies that DMSP biosynthesis is not only confined to the surface oxic sediment zones. It highlights the importance of future work to uncover the DMSP biosynthesis genes/pathways in novel DMSP-producing bacteria.


2021 ◽  
Vol 10 (39) ◽  
Author(s):  
Hangwei Xi ◽  
Maarten Ryder ◽  
Iain R. Searle

Here, we report the annotated, near-complete genome sequence of Allorhizobium vitis K377, a phytopathogenic Rhizobiales strain isolated from a grapevine in South Australia. The assembled genome sequence is 6.40 Mb long, with 5,855 predicted protein-coding sequences, 56 tRNAs, and 12 rRNAs, and contains ttuC (tartrate metabolism; chromosomal) and nopaline synthesis, uptake, and catabolic genes (tumor-inducing plasmid-encoded).


Sign in / Sign up

Export Citation Format

Share Document