lysosomal storage disorders
Recently Published Documents


TOTAL DOCUMENTS

543
(FIVE YEARS 100)

H-INDEX

52
(FIVE YEARS 7)

Cells ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 36
Author(s):  
Ritva Tikkanen

Lysosomal storage disorders (LSDs) are rare, monogenic diseases characterized by aberrant lysosomes with storage material [...]


2021 ◽  
Vol 53 ◽  
pp. S309
Author(s):  
T. Usenko ◽  
A. Bezrukova ◽  
K. Basharova ◽  
D. Bogdanova ◽  
K. Senkevich ◽  
...  

Author(s):  
Kerri-Lee Wallom ◽  
María E. Fernández-Suárez ◽  
David A. Priestman ◽  
Danielle te Vruchte ◽  
Mylene Huebecker ◽  
...  

AbstractIt is well established that lysosomal glucocerebrosidase gene (GBA) variants are a risk factor for Parkinson’s disease (PD), with increasing evidence suggesting a loss of function mechanism. One question raised by this genetic association is whether variants of genes involved in other aspects of sphingolipid metabolism are also associated with PD. Recent studies in sporadic PD have identified variants in multiple genes linked to diseases of glycosphingolipid (GSL) metabolism to be associated with PD. GSL biosynthesis is a complex pathway involving the coordinated action of multiple enzymes in the Golgi apparatus. GSL catabolism takes place in the lysosome and is dependent on the action of multiple acid hydrolases specific for certain substrates and glycan linkages. The finding that variants in multiple GSL catabolic genes are over-represented in PD in a heterozygous state highlights the importance of GSLs in the healthy brain and how lipid imbalances and lysosomal dysfunction are associated with normal ageing and neurodegenerative diseases. In this article we will explore the link between lysosomal storage disorders and PD, the GSL changes seen in both normal ageing, lysosomal storage disorders (LSDs) and PD and the mechanisms by which these changes can affect neurodegeneration.


2021 ◽  
pp. 1106-1113
Author(s):  
Radhika Dhamija ◽  
Erin Conboy ◽  
Lily C. Wong-Kisiel

Lysosomes are membrane-bound organelles that degrade various macromolecules. Lysosomal storage diseases are a clinically, enzymatically, and genetically heterogeneous group of disorders resulting from intracellular accumulation of substrates. Mechanisms of lysosomal storage disorders include 1) primary deficiency of specific hydrolases; 2) defects in activator proteins required for enzyme-substrate interactions in posttranslational modification of enzymes or in transport of the substrate from lysosomes; and 3) abnormalities of fusion between autophagic vacuoles and lysosomes. Substrate accumulation is slowly progressive, leading to considerable morbidity and mortality.


Cells ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2813
Author(s):  
Antje Banning ◽  
Ritva Tikkanen

Splicing defects caused by mutations in the consensus sequences at the borders of introns and exons are common in human diseases. Such defects frequently result in a complete loss of function of the protein in question. Therapy approaches based on antisense oligonucleotides for specific gene mutations have been developed in the past, but they are very expensive and require invasive, life-long administration. Thus, modulation of splicing by means of small molecules is of great interest for the therapy of genetic diseases resulting from splice-site mutations. Using minigene approaches and patient cells, we here show that methylxanthine derivatives and the food-derived flavonoid luteolin are able to enhance the correct splicing of the AGA mRNA with a splice-site mutation c.128-2A>G in aspartylglucosaminuria, and result in increased AGA enzyme activity in patient cells. Furthermore, we also show that one of the most common disease causing TPP1 gene variants in classic late infantile neuronal ceroid lipofuscinosis may also be amenable to splicing modulation using similar substances. Therefore, our data suggest that splice-modulation with small molecules may be a valid therapy option for lysosomal storage disorders.


2021 ◽  
Vol 0 (0) ◽  
pp. 370-376
Author(s):  
Asburçe Olgaç ◽  
Çiğdem Seher Kasapkara ◽  
Burak Açıkel ◽  
Yılmaz Yıldız ◽  
Gülhan Karakaya Molla ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document