monogenic disorders
Recently Published Documents


TOTAL DOCUMENTS

297
(FIVE YEARS 157)

H-INDEX

32
(FIVE YEARS 7)

2022 ◽  
Vol 6 (2) ◽  
pp. 01-05
Author(s):  
Svetlana Rechitsky ◽  
Tatiana Pakhalchuk ◽  
Maria Prokhorovich ◽  
Anver Kuliev

Inherited cancer predisposition is presently one of the major indications for preimplantation genetic testing (PGT), providing an option for couplers at risk to avoid the birth of an offspring with predisposition to cancer. We present here our experience of 35 of 874 PGT cycles for cancer, in which in addition to BRCA1/2 the couples were at risk to another genetic conditions as well, for which PGT was performed together with PGT for breast cancer. This resulted in in birth of 20 mutation free children with not only unaffected for the tested genetic condition, but also without risk of developing cancer. This is a part of our overall PGT series of 6,204 PGT cases for monogenic disorders (PGT-M), with 2,517 resulting births, free of genetic disorder. The accumulated experience, demonstrates considerable progress in using PGT for avoiding the birth of affected children together with avoiding predisposition to cancer.


2021 ◽  
Vol 26 (4) ◽  
pp. 218-226
Author(s):  
Martin Oswald Savage ◽  
Helen Louise Storr

Determining the pathogenesis of pediatric growth disorders is often challenging. In many cases, no pathogenesis is identified, and a designation of idiopathic short stature is used. The investigation of short stature requires a combination of clinical, endocrinological, and genetic evaluation. The techniques used are described, with equal importance being given to each of the 3 approaches. Clinical skills are essential to elicit an accurate history, family pedigree, and symptoms of body system dysfunction. Endocrine assessment requires hormonal determination for the diagnosis of hormone deficiency and initiation of successful replacement therapy. Genetic analysis has added a new dimension to the investigation of short stature and now uses next-generation sequencing with a candidate gene approach to confirm probable recognizable monogenic disorders and exome sequencing for complex phenotypes of unknown origin. Using the 3 approaches of clinical, endocrine, and genetic probes with equal status in the hierarchy of investigational variables provides the clinician with the highest chance of identifying the correct causative pathogenetic mechanism in a child presenting with short stature of unknown origin.


2021 ◽  
Author(s):  
Paul J. Newey ◽  
Fadil M. Hannan ◽  
Abbie Wilson ◽  
Rajesh V. Thakker

Author(s):  
Holly Wobma ◽  
Ryan Perkins ◽  
Lisa Bartnikas ◽  
Fatma Dedeoglu ◽  
Janet Chou ◽  
...  

In recent years, a number of monogenic disorders have been described that are characterized by immune dysregulation. A subset of these ‘primary immune regulatory disorders’ can cause severe interstitial lung disease, often recognized in late childhood or adolescence. Patients presenting to pulmonary clinic may have long and complex medical histories but lack a unifying genetic diagnosis. It is crucial for pulmonologists to recognize features suggestive of multisystem immune dysregulation and to initiate genetic workup, since targeted therapies based on underlying genetics may halt or even reverese pulmonary disease progression. Through such an approach, our center has been able to diagnose and treat a cohort of patients with interstitial lung disease from gene defects that affect immune regulation. Here we present representative cases related to pathogenic mutations in three distinct pathways and summarize disease manifestations and treatment approaches. We conclude with a discussion of our perspective on the outstanding challenges for diagnosing and managing these complex life-threatening and chronic disorders.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Kellan P. Weston ◽  
Xiaoyi Gao ◽  
Jinghan Zhao ◽  
Kwang-Soo Kim ◽  
Susan E. Maloney ◽  
...  

AbstractThe mechanisms that underlie the extensive phenotypic diversity in genetic disorders are poorly understood. Here, we develop a large-scale assay to characterize the functional valence (gain or loss-of-function) of missense variants identified in UBE3A, the gene whose loss-of-function causes the neurodevelopmental disorder Angelman syndrome. We identify numerous gain-of-function variants including a hyperactivating Q588E mutation that strikingly increases UBE3A activity above wild-type UBE3A levels. Mice carrying the Q588E mutation exhibit aberrant early-life motor and communication deficits, and individuals possessing hyperactivating UBE3A variants exhibit affected phenotypes that are distinguishable from Angelman syndrome. Additional structure-function analysis reveals that Q588 forms a regulatory site in UBE3A that is conserved among HECT domain ubiquitin ligases and perturbed in various neurodevelopmental disorders. Together, our study indicates that excessive UBE3A activity increases the risk for neurodevelopmental pathology and suggests that functional variant analysis can help delineate mechanistic subtypes in monogenic disorders.


Genes ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1855
Author(s):  
Justyna Chojdak-Łukasiewicz ◽  
Edyta Dziadkowiak ◽  
Sławomir Budrewicz

Strokes are the main cause of death and long-term disability worldwide. A stroke is a heterogeneous multi-factorial condition, caused by a combination of environmental and genetic factors. Monogenic disorders account for about 1% to 5% of all stroke cases. The most common single-gene diseases connected with strokes are cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) Fabry disease, mitochondrial myopathy, encephalopathy, lactacidosis, and stroke (MELAS) and a lot of single-gene diseases associated particularly with cerebral small-vessel disease, such as COL4A1 syndrome, cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy (CARASIL), and Hereditary endotheliopathy with retinopathy, nephropathy, and stroke (HERNS). In this article the clinical phenotype for the most important single-gene disorders associated with strokes are presented. The monogenic causes of a stroke are rare, but early diagnosis is important in order to provide appropriate therapy when available.


2021 ◽  
Vol 9 ◽  
Author(s):  
Evgenia Gurevich ◽  
Shelly Levi ◽  
Yael Borovitz ◽  
Hadas Alfandary ◽  
Liat Ganon ◽  
...  

Purpose: Hypercalcemia with low parathyroid hormone (PTH) level, hypercalciuria, nephrocalcinosis, or nephrolithiasis, was recently reported as caused by mutations in CYP24A1 and SLC34A genes. These encode for vitamin D-24A-hydroxylase and for the renal phosphate transporters NaPiIIa and NaPiIIc, respectively. We aimed to describe the clinical course of these monogenic disorders in patients with and without found mutations during long-term follow-up.Methods: Ten patients with hypercalcemia, hypercalciuria, elevated 1,25-(OH)2D levels and suppressed PTH were followed in our center during 1998–2019. Relevant laboratory and imaging data and results of genetic evaluation were retrieved from medical files.Results: The median age at presentation was 9.5 months (range 1 month−11 years), six were males, and the median follow-up time was 3.8 (1.1–14) years. Mutations in CYP24A1 and SLC34A3 were identified in three and one patients, respectively. Five patients presented with nephrocalcinosis, three with nephrolithiasis, and two had normal renal ultrasound. High blood calcium and 1,25-(OH)2D levels at presentation decreased during follow-up [11.1 ± 1 vs. 9.9 ± 0.5 mg/dl (p = 0.012), and 307 ± 130 vs. 209 ± 65 pmol/l (p = 0.03), respectively]; this paralleled an increase in suppressed PTH levels (5.8 ± 0.9 vs. 11.8 ± 7.3 pg/ml, p = 0.2). Substantial improvements in hypercalciuria and renal sonography findings were not observed. Two patients had impaired renal function (eGFR 84–88 ml/min/1/73 m2) at the last follow up. Interventions included appropriate diet, citrate supplementation, and thiazides.Conclusion: Despite improvement in hypercalcemia and 1,25-(OH)2D levels, not all the patients showed improvements in hypercalciuria and nephrocalcinosis. Deterioration of renal function was also observed. Long-term follow up and intervention to prevent nephrocalcinosis and nephrolithiasis are recommended in these children.


Genes ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1667
Author(s):  
Wout Weuring ◽  
Jeroen Geerligs ◽  
Bobby P. C. Koeleman

Novel genome editing and transient gene therapies have been developed the past ten years, resulting in the first in-human clinical trials for monogenic disorders. Syndromic autism spectrum disorders can be caused by mutations in a single gene. Given the monogenic aspect and severity of syndromic ASD, it is an ideal candidate for gene therapies. Here, we selected 11 monogenic ASD syndromes, validated by animal models, and reviewed current gene therapies for each syndrome. Given the wide variety and novelty of some forms of gene therapy, the best possible option must be decided based on the gene and mutation.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Xia Li ◽  
Mi Shao ◽  
Xiangjun Zeng ◽  
Pengxu Qian ◽  
He Huang

AbstractCytokine release syndrome (CRS) embodies a mixture of clinical manifestations, including elevated circulating cytokine levels, acute systemic inflammatory symptoms and secondary organ dysfunction, which was first described in the context of acute graft-versus-host disease after allogeneic hematopoietic stem-cell transplantation and was later observed in pandemics of influenza, SARS-CoV and COVID-19, immunotherapy of tumor, after chimeric antigen receptor T (CAR-T) therapy, and in monogenic disorders and autoimmune diseases. Particularly, severe CRS is a very significant and life-threatening complication, which is clinically characterized by persistent high fever, hyperinflammation, and severe organ dysfunction. However, CRS is a double-edged sword, which may be both helpful in controlling tumors/viruses/infections and harmful to the host. Although a high incidence and high levels of cytokines are features of CRS, the detailed kinetics and specific mechanisms of CRS in human diseases and intervention therapy remain unclear. In the present review, we have summarized the most recent advances related to the clinical features and management of CRS as well as cutting-edge technologies to elucidate the mechanisms of CRS. Considering that CRS is the major adverse event in human diseases and intervention therapy, our review delineates the characteristics, kinetics, signaling pathways, and potential mechanisms of CRS, which shows its clinical relevance for achieving both favorable efficacy and low toxicity.


Sign in / Sign up

Export Citation Format

Share Document