P.0701 Associations between Kynurenine/Tryptophan ratio, peripheral inflammatory markers and white matter microstructure in bipolar disorder and major depressive disorder

2021 ◽  
Vol 53 ◽  
pp. S514
Author(s):  
E.M.T. Melloni ◽  
S. Comai ◽  
C. Lorenzi ◽  
R. Zanardi ◽  
C. Colombo ◽  
...  
2017 ◽  
Vol 39 ◽  
pp. 51-56 ◽  
Author(s):  
K. Hamazaki ◽  
M. Maekawa ◽  
T. Toyota ◽  
B. Dean ◽  
T. Hamazaki ◽  
...  

AbstractBackgroundStudies investigating the relationship between n-3 polyunsaturated fatty acid (PUFA) levels and psychiatric disorders have thus far focused mainly on analyzing gray matter, rather than white matter, in the postmortem brain. In this study, we investigated whether PUFA levels showed abnormalities in the corpus callosum, the largest area of white matter, in the postmortem brain tissue of patients with schizophrenia, bipolar disorder, or major depressive disorder.MethodsFatty acids in the phospholipids of the postmortem corpus callosum were evaluated by thin-layer chromatography and gas chromatography. Specimens were evaluated for patients with schizophrenia (n = 15), bipolar disorder (n = 15), or major depressive disorder (n = 15) and compared with unaffected controls (n = 15).ResultsIn contrast to some previous studies, no significant differences were found in the levels of PUFAs or other fatty acids in the corpus callosum between patients and controls. A subanalysis by sex gave the same results. No significant differences were found in any PUFAs between suicide completers and non-suicide cases regardless of psychiatric disorder diagnosis.ConclusionsPatients with psychiatric disorders did not exhibit n-3 PUFAs deficits in the postmortem corpus callosum relative to the unaffected controls, and the corpus callosum might not be involved in abnormalities of PUFA metabolism. This area of research is still at an early stage and requires further investigation.


Author(s):  
Brianne Disabato ◽  
Isabelle E. Bauer ◽  
Jair C. Soares ◽  
Yvette Sheline

Unipolar major depressive disorder (MDD) and bipolar disorder (BD) are among the world’s leading causes of disability. This chapter highlights the importance of neuroimaging in understanding their neural mechanisms. Depression affects limbic-corticostriatopallidothalamic regions. Structurally, depressed subjects showed increased volume of lesions in white matter (WMH) and decreased gray matter in prefrontal-striatum, orbitofrontal, anterior cingulate cortices, and hippocampus. Functionally, depressed subjects showed abnormal activation in amygdala and medial prefrontal cortex and dsyconnectivity in executive and emotional networks. BD was associated with frontocingulate, limbic-striatal, and hippocampus abnormalities. Specifically, BD subjects showed increased WMH in frontocortical and subcortical areas and altered microstructure in limbic-striatal, cingulate, thalamus, corpus callosum, and prefrontal regions. Functionally, abnormal activations in dorsolateral prefrontal and ventrolimbic regions, hypoconnectivity in the cinguloinsularopercular, mesoparalimbic, and cerebellar networks, and hyperconnectivity in affective and executive networks were also observed. These studies show congruence. Full integration of them would allow better understanding of mood disorders.


2018 ◽  
Vol 225 ◽  
pp. 289-297 ◽  
Author(s):  
Sara Poletti ◽  
Veronica Aggio ◽  
Silvia Brioschi ◽  
Irene Bollettini ◽  
Andrea Falini ◽  
...  

2011 ◽  
Vol 2011 ◽  
pp. 1-10 ◽  
Author(s):  
Victor Vostrikov ◽  
Natalya Uranova

The postnatal maturation of the human prefrontal cortex is associated with substantial increase of number of oligodendrocytes. Previously, we reported decreased numerical density of oligodendrocytes in the prefrontal cortex in schizophrenia and mood disorders. To gain further understanding of the role oligodendrocytes in pathogenesis of schizophrenia and mood disorders, we examined the effect of the age on the number of oligodendrocytes in the prefrontal cortex in schizophrenia, bipolar disorder, and major depressive disorder. We revealed the age-related increase in numerical density of oligodendrocytes in layer VI and adjacent white matter of BA10 and BA 9 in normal controls but not in schizophrenia, bipolar disorder, and major depressive disorder. The absence of normal increase in the number of oligodendrocytes in gray and white matter with age in schizophrenia and mood disorders suggests that age-related process of oligodendrocyte increase is dysregulated in schizophrenia and mood disorders.


Sign in / Sign up

Export Citation Format

Share Document