scholarly journals MeCP2 functions largely cell-autonomously, but also non-cell-autonomously, in neuronal maturation and dendritic arborization of cortical pyramidal neurons

2010 ◽  
Vol 222 (1) ◽  
pp. 51-58 ◽  
Author(s):  
Noriyuki Kishi ◽  
Jeffrey D. Macklis
Neuron ◽  
2007 ◽  
Vol 56 (4) ◽  
pp. 621-639 ◽  
Author(s):  
Jenny M. Gunnersen ◽  
Mary H. Kim ◽  
Stephanie J. Fuller ◽  
Melanie De Silva ◽  
Joanne M. Britto ◽  
...  

2020 ◽  
Vol 12 (570) ◽  
pp. eabc1492
Author(s):  
Lawrence S. Hsieh ◽  
John H. Wen ◽  
Lena H. Nguyen ◽  
Longbo Zhang ◽  
Stephanie A. Getz ◽  
...  

The causative link between focal cortical malformations (FCMs) and epilepsy is well accepted, especially among patients with focal cortical dysplasia type II (FCDII) and tuberous sclerosis complex (TSC). However, the mechanisms underlying seizures remain unclear. Using a mouse model of TSC- and FCDII-associated FCM, we showed that FCM neurons were responsible for seizure activity via their unexpected abnormal expression of the hyperpolarization-activated cyclic nucleotide–gated potassium channel isoform 4 (HCN4), which is normally not present in cortical pyramidal neurons after birth. Increasing intracellular cAMP concentrations, which preferentially affects HCN4 gating relative to the other isoforms, drove repetitive firing of FCM neurons but not control pyramidal neurons. Ectopic HCN4 expression was dependent on the mechanistic target of rapamycin (mTOR), preceded the onset of seizures, and was also found in diseased neurons in tissue resected from patients with TSC and FCDII. Last, blocking HCN4 channel activity in FCM neurons prevented epilepsy in the mouse model. These findings suggest that HCN4 play a main role in seizure and identify a cAMP-dependent seizure mechanism in TSC and FCDII. Furthermore, the unique expression of HCN4 exclusively in FCM neurons suggests that gene therapy targeting HCN4 might be effective in reducing seizures in FCDII or TSC.


2009 ◽  
Vol 19 (11) ◽  
pp. 2719-2727 ◽  
Author(s):  
J.-R. Chen ◽  
Y.-T. Yan ◽  
T.-J. Wang ◽  
L.-J. Chen ◽  
Y.-J. Wang ◽  
...  

PLoS ONE ◽  
2010 ◽  
Vol 5 (5) ◽  
pp. e10596 ◽  
Author(s):  
Ning Li ◽  
Chun-Tao Zhao ◽  
Ying Wang ◽  
Xiao-Bing Yuan

2013 ◽  
Vol 218 (6) ◽  
pp. 1407-1417 ◽  
Author(s):  
Jeng-Rung Chen ◽  
Tsyr-Jiuan Wang ◽  
Seh-Hong Lim ◽  
Yueh-Jan Wang ◽  
Guo-Fang Tseng

2008 ◽  
Vol 61 (5-6) ◽  
pp. 235-241
Author(s):  
Milos Malis ◽  
Valentina Nikolic ◽  
Vuk Djulejic ◽  
Dejan Opric ◽  
Lukas Rasulic ◽  
...  

Introduction Cortical amygdaloid nucleus belongs to the corticomedial part of the amygdaloid complex. In this nucleus there are neurons that produce neuropetide Y. This peptide has important roles in sleeping, learning, memory, gastrointestinal regulation, anxiety, epilepsy, alcoholism and depression. Material and methods We investigated morphometric characteristics (numbers of primary dendrites, longer and shorter diameters of cell bodies and maximal radius of dendritic arborization) of NPY immunoreactive neurons of human cortical amygdaloid nucleus on 6 male adult human brains, aged 46 to 77 years, by immunohistochemical avidin-biotin technique. Results Our investigation has shown that in this nucleus there is a moderate number of NPY immunoreactive neurons. 67% of found neurons were nonpyramidal, while 33% were pyramidal. Among the nonpyramidal neurons the dominant groups were multipolar neurons (41% - of which 25% were multipolar irregular, and 16% multipolar oval). Among the pyramidal neurons the dominant groups were the neurons with triangular shape of cell body (21%). All found NPY immunoreactive neurons (pyramidal and nonpyramidal altogether) had intervals of values of numbers of primary dendrites 2 to 6, longer diameters of cell bodies 13 to 38 ?m, shorter diameters of cell bodies 9 to 20 ?m and maximal radius of dendritic arborization 50 to 340 ?m. More than a half of investigated neurons (57%) had 3 primary dendrites. Discussion and conclusion The other researchers did not find such percentage of pyramidal immunoreactive neurons in this amygdaloid nucleus. If we compare our results with the results of the ather researchers we can conclude that all pyramidal NPY immunoreactive neurons found in this human amygdaloid nucleus belong to the class I of neurons, and that all nonpyramidal NPY immunoreactive neurons belong to the class II of neurons described by other researchers. We suppose that all found pyramidal neurons were projectional.


Sign in / Sign up

Export Citation Format

Share Document