mechanistic target of rapamycin
Recently Published Documents


TOTAL DOCUMENTS

436
(FIVE YEARS 196)

H-INDEX

40
(FIVE YEARS 10)

Author(s):  
Junya Hasegawa ◽  
Emi Tokuda ◽  
Yao Yao ◽  
Takehiko Sasaki ◽  
Ken Inoki ◽  
...  

Transcriptional factor EB (TFEB) is a master regulator of genes required for autophagy and lysosomal function. The nuclear localization of TFEB is blocked by the mechanistic target of rapamycin complex 1 (mTORC1)-dependent phosphorylation of TFEB at multiple sites including Ser-211. Here we show that inhibition of PIKfyve, which produces phosphatidylinositol 3,5-bisphosphate on endosomes and lysosomes, causes a loss of Ser-211 phosphorylation and concomitant nuclear localization of TFEB. We found that while mTORC1 activity toward S6K1, as well as other major mTORC1 substrates, is not impaired, PIKfyve inhibition specifically impedes the interaction of TFEB with mTORC1. This suggests that mTORC1 activity on TFEB is selectively inhibited due to loss of mTORC1 access to TFEB. In addition, we found that TFEB activation during inhibition of PIKfyve relies on the ability of protein phosphatase 2A (PP2A) but not calcineurin/PPP3, to dephosphorylate TFEB Ser-211. Thus, when PIKfyve is inhibited, PP2A is dominant over mTORC1 for control of TFEB phosphorylation at Ser-S211. Together these findings suggest that mTORC1 and PP2A have opposing roles on TFEB via phosphorylation and dephosphorylation of Ser-211, respectively, and further, that PIKfyve inhibits TFEB activity by facilitating mTORC1-dependent phosphorylation of TFEB.


2022 ◽  
Vol 12 ◽  
Author(s):  
Bruce Chen ◽  
Maurice B. Fluitt ◽  
Aaron L. Brown ◽  
Samantha Scott ◽  
Anirudh Gadicherla ◽  
...  

The mechanistic target of rapamycin (mTOR), a serine-threonine-specific kinase, is a cellular energy sensor, integrating growth factor and nutrient signaling. In the collecting duct (CD) of the kidney, the epithelial sodium channel (ENaC) essential in the determination of final urine Na+ losses, has been demonstrated to be upregulated by mTOR, using cell culture and mTOR inhibition in ex vivo preparations. We tested whether CD-principal cell (PC) targeted deletion of mTOR using Cre-lox recombination would affect whole-body sodium homeostasis, blood pressure, and ENaC regulation in mice. Male and female CD-PC mTOR knockout (KO) mice and wild-type (WT) littermates (Cre-negative) were generated using aquaporin-2 (AQP2) promoter to drive Cre-recombinase. Under basal conditions, KO mice showed a reduced (∼30%) natriuretic response to benzamil (ENaC) antagonist, suggesting reduced in vivo ENaC activity. WT and KO mice were fed normal sodium (NS, 0.45% Na+) or a very low Na+ (LS, <0.02%) diet for 7-days. Switching from NS to LS resulted in significantly higher urine sodium losses (relative to WT) in the KO with adaptation occurring by day 2. Blood pressures were modestly (∼5–10 mm Hg) but significantly lower in KO mice under both diets. Western blotting showed KO mice had 20–40% reduced protein levels of all three subunits of ENaC under LS or NS diet. Immunohistochemistry (IHC) of kidney showed enhanced apical-vs.-cellular localization of all three subunits with LS, but a reduction in this ratio for γ-ENaC in the KO. Furthermore, the KO kidneys showed increased ubiquitination of α-ENaC and reduced phosphorylation of the serum and glucocorticoid regulated kinase, type 1 [serum glucocorticoid regulated kinase (SGK1)] on serine 422 (mTOR phosphorylation site). Taken together this suggests enhanced degradation as a consequence of reduced mTOR kinase activity and downstream upregulation of ubiquitination may have accounted for the reduction at least in α-ENaC. Overall, our data support a role for mTOR in ENaC activity likely via regulation of SGK1, ubiquitination, ENaC channel turnover and apical membrane residency. These data support a role for mTOR in the collecting duct in the maintenance of body sodium homeostasis.


Biomedicines ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 1809
Author(s):  
Kostas A. Papavassiliou ◽  
Athanasios G. Papavassiliou

Glioblastoma multiforme (GBM), a grade IV astrocytoma, is a lethal brain tumor with a poor prognosis. Despite recent advances in the molecular biology of GBM, neuro-oncologists have very limited treatment options available to improve the survival of GBM patients. A prominent signaling pathway implicated in GBM pathogenesis is that of the mechanistic target of rapamycin (mTOR). Attempts to target the mTOR pathway with first-generation mTOR inhibitors appeared promising in the preclinical stage; however, results have been disappointing in clinical trials, owing to the heterogeneous nature of GBM, escape mechanisms against treatment, the blood–brain barrier, drug-related toxicities, and the imperfect design of clinical trials, among others. The development of next-generation mTOR inhibitors and their current evaluation in clinical trials have sparked new hope to realize the clinical potential of mTOR inhibitors in GBM. Meanwhile, studies are continuously furthering our understanding of mTOR signaling dysregulation, its downstream effects, and interplay with other signaling pathways in GBM tumors. Therefore, it remains to be seen whether targeting mTOR in GBM will eventually prove to be fruitful or futile.


Author(s):  
Fredrick J. Rosario ◽  
Amy Catherine Kelly ◽  
Madhulika B. Gupta ◽  
Theresa L. Powell ◽  
Laura Cox ◽  
...  

Mechanistic Target of Rapamycin Complex 2 (mTORC2) regulates placental amino acid and folate transport. However, the role of mTORC2 in modulating other placental functions is largely unexplored. We used a gene array following the silencing of rictor to identify genes regulated by mTORC2 in primary human trophoblast (PHT) cells. Four hundred and nine genes were differentially expressed; 102 genes were down-regulated and 307 up-regulated. Pathway analyses demonstrated that inhibition of mTORC2 resulted in increased expression of genes encoding for pro-inflammatory IL-6, VEGF-A, leptin, and inflammatory signaling (SAPK/JNK). Furthermore, down-regulated genes were functionally enriched in genes involved in angiogenesis (Osteopontin) and multivitamin transport (SLC5A6). In addition, the protein expression of leptin, VEGFA, IL-6 was increased and negatively correlated to mTORC2 signaling in human placentas collected from pregnancies complicated by intrauterine growth restriction (IUGR). In contrast, the protein expression of Osteopontin and SLC5A6 was decreased and positively correlated to mTORC2 signaling in human IUGR placentas. In conclusion, mTORC2 signaling regulates trophoblast expression of genes involved in inflammation, micronutrient transport, and angiogenesis, representing novel links between mTOR signaling and multiple placental functions necessary for fetal growth and development.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Soyeon Lim ◽  
You-Joung Kim ◽  
Sooyeon Park ◽  
Ji-heon Choi ◽  
Younghoon Sung ◽  
...  

Retinal progenitor cells (RPCs) divide in limited numbers to generate the cells comprising vertebrate retina. The molecular mechanism that leads RPC to the division limit, however, remains elusive. Here, we find that the hyperactivation of mechanistic target of rapamycin complex 1 (mTORC1) in an RPC subset by deletion of tuberous sclerosis complex 1 (Tsc1) makes the RPCs arrive at the division limit precociously and produce Müller glia (MG) that degenerate from senescence-associated cell death. We further show the hyperproliferation of Tsc1-deficient RPCs and the degeneration of MG in the mouse retina disappear by concomitant deletion of hypoxia-induced factor 1-a (Hif1a), which induces glycolytic gene expression to support mTORC1-induced RPC proliferation. Collectively, our results suggest that, by having mTORC1 constitutively active, an RPC divides and exhausts mitotic capacity faster than neighboring RPCs, and thus produces retinal cells that degenerate with aging-related changes.


Sign in / Sign up

Export Citation Format

Share Document