scholarly journals Hypoxia triggers short term potentiation of phrenic motoneuron discharge after chronic cervical spinal cord injury

2015 ◽  
Vol 263 ◽  
pp. 314-324 ◽  
Author(s):  
Kun-Ze Lee ◽  
Milapjit S. Sandhu ◽  
Brendan J. Dougherty ◽  
Paul J. Reier ◽  
David D. Fuller
2017 ◽  
Vol 118 (4) ◽  
pp. 2344-2357 ◽  
Author(s):  
Elisa J. Gonzalez-Rothi ◽  
Kristi A. Streeter ◽  
Marie H. Hanna ◽  
Anna C. Stamas ◽  
Paul J. Reier ◽  
...  

C2 spinal hemilesion (C2Hx) paralyzes the ipsilateral diaphragm, but recovery is possible through activation of “crossed spinal” synaptic inputs to ipsilateral phrenic motoneurons. We tested the hypothesis that high-frequency epidural stimulation (HF-ES) would potentiate ipsilateral phrenic output after subacute and chronic C2Hx. HF-ES (300 Hz) was applied to the ventrolateral C4 or T2 spinal cord ipsilateral to C2Hx in anesthetized and mechanically ventilated adult rats. Stimulus duration was 60 s, and currents ranged from 100 to 1,000 µA. Bilateral phrenic nerve activity and ipsilateral hypoglossal (XII) nerve activity were recorded before and after HF-ES. Higher T2 stimulus currents potentiated ipsilateral phasic inspiratory activity at both 2 and 12 wk post-C2Hx, whereas higher stimulus currents delivered at C4 potentiated ipsilateral phasic phrenic activity only at 12 wk ( P = 0.028). Meanwhile, tonic output in the ipsilateral phrenic nerve reached 500% of baseline values at the high currents with no difference between 2 and 12 wk. HF-ES did not trigger inspiratory burst-frequency changes. Similar responses occurred following T2 HF-ES. Increases in contralateral phrenic and XII nerve output were induced by C4 and T2 HF-ES at higher currents, but the relative magnitude of these changes was small compared with the ipsilateral phrenic response. We conclude that following incomplete cervical spinal cord injury, HF-ES of the ventrolateral midcervical or thoracic spinal cord can potentiate efferent phrenic motor output with little impact on inspiratory burst frequency. However, the substantial increases in tonic output indicate that the uninterrupted 60-s stimulation paradigm used is unlikely to be useful for respiratory muscle activation after spinal injury. NEW & NOTEWORTHY Previous studies reported that high-frequency epidural stimulation (HF-ES) activates the diaphragm following acute spinal transection. This study examined HF-ES and phrenic motor output following subacute and chronic incomplete cervical spinal cord injury. Short-term potentiation of phrenic bursting following HF-ES illustrates the potential for spinal stimulation to induce respiratory neuroplasticity. Increased tonic phrenic output indicates that alternatives to the continuous stimulation paradigm used in this study will be required for respiratory muscle activation after spinal cord injury.


2013 ◽  
Vol 249 ◽  
pp. 20-32 ◽  
Author(s):  
Kun-Ze Lee ◽  
Brendan J. Dougherty ◽  
Milapjit S. Sandhu ◽  
Michael A. Lane ◽  
Paul J. Reier ◽  
...  

2022 ◽  
Vol 96 ◽  
pp. 74-79
Author(s):  
Sho Okimatsu ◽  
Satoshi Maki ◽  
Takeo Furuya ◽  
Takayuki Fujiyoshi ◽  
Mitsuhiro Kitamura ◽  
...  

2011 ◽  
Vol 25 (S1) ◽  
Author(s):  
Kun‐Ze Lee ◽  
Brendan J. Dougherty ◽  
Milapjit S. Sandhu ◽  
Paul J. Reier ◽  
David D. Fuller

Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1057
Author(s):  
Riccardo Bravi ◽  
Stefano Caputo ◽  
Sara Jayousi ◽  
Alessio Martinelli ◽  
Lorenzo Biotti ◽  
...  

Residual motion of upper limbs in individuals who experienced cervical spinal cord injury (CSCI) is vital to achieve functional independence. Several interventions were developed to restore shoulder range of motion (ROM) in CSCI patients. However, shoulder ROM assessment in clinical practice is commonly limited to use of a simple goniometer. Conventional goniometric measurements are operator-dependent and require significant time and effort. Therefore, innovative technology for supporting medical personnel in objectively and reliably measuring the efficacy of treatments for shoulder ROM in CSCI patients would be extremely desirable. This study evaluated the validity of a customized wireless wearable sensors (Inertial Measurement Units—IMUs) system for shoulder ROM assessment in CSCI patients in clinical setting. Eight CSCI patients and eight healthy controls performed four shoulder movements (forward flexion, abduction, and internal and external rotation) with dominant arm. Every movement was evaluated with a goniometer by different testers and with the IMU system at the same time. Validity was evaluated by comparing IMUs and goniometer measurements using Intraclass Correlation Coefficient (ICC) and Limits of Agreement (LOA). inter-tester reliability of IMUs and goniometer measurements was also investigated. Preliminary results provide essential information on the accuracy of the proposed wireless wearable sensors system in acquiring objective measurements of the shoulder movements in CSCI patients.


2021 ◽  
Vol 284 ◽  
pp. 103568
Author(s):  
Pauline Michel-Flutot ◽  
Arnaud Mansart ◽  
Therese B. Deramaudt ◽  
Isley Jesus ◽  
Kun-Ze Lee ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document