Experiments on pool boiling regimes and bubble departure characteristics of single vapor bubble under subcooled bulk conditions

2020 ◽  
Vol 111 ◽  
pp. 109943 ◽  
Author(s):  
Surya Narayan ◽  
Tajinder Singh ◽  
Atul Srivastava
Keyword(s):  
2015 ◽  
Vol 137 (2) ◽  
Author(s):  
Naveenan Thiagarajan ◽  
Sushil H. Bhavnani ◽  
Vinod Narayanan

This paper reports bubble dynamics observed during pool boiling over microstructures with an asymmetric saw-tooth cross section, under reduced gravity. The periodic saw-toothed ratchets etched on a silicon surface include fabricated vapor bubble nucleation sites only on the shallow slope. Reduced gravity pool boiling experiments were conducted aboard a Boeing 727 aircraft carrying out parabolic maneuvers. The fluid used was FC-72, a highly wetting dielectric fluid used as a coolant for electronics. Under microgravity, it was observed that the bubble diameters were six times larger than in terrestrial gravity. Also, self-propelled sliding bubble motion along the surface of the saw teeth was observed in reduced gravity. The velocity of the sliding bubbles across the saw teeth, following lateral departure from the cavities, was measured to be as high as 27.4 mm/s. A model for the sliding bubble motion is proposed by attributing it to the force due to pressure differences that arise in the liquid film between the vapor bubble and the saw-toothed heated surface. The pressure difference is due to difference in the radius of curvature of the interface between the crest and trough of the saw teeth. The surface modification technique, which resulted in the sliding bubble motion, has the potential to alleviate dry-out caused due to stagnant vapor bubbles over heat sources under microgravity when the buoyancy forces are negligible compared to the surface tension forces.


2007 ◽  
Vol 2007.3 (0) ◽  
pp. 135-136
Author(s):  
Hiroshi NAGAKURA ◽  
Hayato KUBOTA ◽  
Tomio OKAWA ◽  
Isao KATAOKA

2016 ◽  
Vol 6 (1) ◽  
Author(s):  
An Zou ◽  
Ashish Chanana ◽  
Amit Agrawal ◽  
Peter C. Wayner ◽  
Shalabh C. Maroo

Author(s):  
Naveenan Thiagarajan ◽  
Sushil H. Bhavnani ◽  
Vinod Narayanan

This paper reports bubble dynamics observed during pool boiling over micro-structures with an asymmetric saw-tooth cross-section, under reduced gravity. The periodic saw-toothed ratchets etched on a silicon surface include fabricated vapor bubble nucleation sites only on the shallow slope. Reduced gravity pool boiling experiments were conducted aboard a Boeing 727 aircraft (Zero-g Inc.) carrying out parabolic maneuvers to achieve reduced gravity. The fluid used was FC-72, a highly wetting dielectric fluid used as a coolant for electronics. Under microgravity, it was observed that the bubble diameters were six times larger than in terrestrial gravity. Also, self-propelled sliding bubble motion along the surface of the saw teeth was observed in reduced gravity. The velocity of the sliding bubbles across the saw teeth, following lateral departure from the cavities, was measured to be as high as 27.4 mm/s. A model for the sliding bubble motion is proposed by attributing it to the force due to pressure differences that arise in the liquid film between the vapor bubble and the saw-toothed heated surface. The pressure difference is due to difference in the radius of curvature of the interface between the crest and trough of the saw teeth. The surface modification technique has the potential to alleviate dry out caused due to vapor blanketing of heat sources in microgravity due to negligible buoyancy forces compared to the surface tension forces.


Author(s):  
Brendon Doran ◽  
Bin Zhang ◽  
Shayan Davani ◽  
Kojo Asiamah Osafo ◽  
Owen Sutka ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document