surfactant aqueous solution
Recently Published Documents


TOTAL DOCUMENTS

43
(FIVE YEARS 8)

H-INDEX

8
(FIVE YEARS 1)

2021 ◽  
Vol 22 (14) ◽  
pp. 7573
Author(s):  
Yusei Kobayashi ◽  
Hirotaka Gomyo ◽  
Noriyoshi Arai

The phenomenon of drag reduction (known as the “Toms effect”) has many industrial and engineering applications, but a definitive molecular-level theory has not yet been constructed. This is due both to the multiscale nature of complex fluids and to the difficulty of directly observing self-assembled structures in nonequilibrium states. On the basis of a large-scale coarse-grained molecular simulation that we conducted, we propose a possible mechanism of turbulence suppression in surfactant aqueous solution. We demonstrate that maintaining sufficiently large micellar structures and a homogeneous radial distribution of surfactant molecules is necessary to obtain the drag-reduction effect. This is the first molecular-simulation evidence that a micellar structure is responsible for drag reduction in pipe flow, and should help in understanding the mechanisms underlying drag reduction by surfactant molecules under nonequilibrium conditions.


2021 ◽  
Author(s):  
Anas. M. Hassan ◽  
Mohammed Ayoub ◽  
Mysara Eissa ◽  
Hans Bruining ◽  
Abdullah Al-Mansour ◽  
...  

Abstract Given the increasing demand for energy globally and depleting oil and gas resources, it is crucial to increase the production from existing reservoirs by introducing new technologies for Improved/Enhanced Oil Recovery (IOR/EOR). This contribution presents a novel hybrid IOR/EOR method, which combines smart water (SW) and foam flooding, known as Smart Water Assisted Foam (SWAF) flooding. The optimal conditions of the SWAF technology will be interpreted using experimental laboratory design (i.e., experimental data). The experimental design was divided into three main steps. The first step is obtaining rock wettability measurements using contact angle measurements. This step aims to select the optimum SW composition that changes the carbonate rock's wettability from oil-wet towards more water-wet and faster oil recoveries. The water-wet condition leads to high residual oil saturations and low end-point permeabilities. This is conductive to favourable mobility ratios and efficient water-oil displacement. However, high residual oil saturations are unfavourable to the high ultimate oil recovery as much oil stays behind. Secondly, the chemical screening follows, where two tests were performed, viz., (i) an Aqueous Stability Test (AST), (ii) and a Foamability and Foam Stability Tests (FT/FST). This step aims to generate a stable foam (i.e., surfactant aqueous solution + gas) in the absence and presence of crude oil with different TAN (Total Acid Number) and TBN (Total Base Number), viz., crude oils Type-A and Type-B. Favourable mobility ratio is achieved by the presence of foam, which leads to excellent displacement efficiency. Thirdly, core flooding tests are performed. This step aims to select the best formulations through SWAF core flooding tests to obtain the ultimate recovery factor under different injection scenarios. The optimal SWAF condition combines high ultimate recovery with the best displacement efficiency. It is shown that the enormous changes in wettability were seen for SW (MgCl2) solution at 3500 (ppm) for both crude oils Type-A and Type-B. It has been shown that the use of a cationic surfactant CTAB (i.e., cetyltrimethylammonium-bromide) in the positively charged carbonates (with an isoelectric point of pH = 9) is more effective than the use of anionic surfactant, e.g., Alpha Olefin Sulfonate (AOS). The aim is to create an optimum surfactant aqueous solution (SAS). The SAS stability is considerably affected by the concentration of both the SW (MgCl2) and surfactant (CTAB). In the absence of oil, the strength of foam (SAS and Gas) is highly dependent on the concentration and composition of the SW in the SAS. In the presence of oil, foam generation and stability are better when the crude oil has a low TAN and high TBN. From the core flooding tests for crude oils Type-A and Type-B, the ultimate residual oil recovery was achieved by the MgCl2 - foam injection combination (i.e., incremental oil recovery of 42%, which is equivalent to a cumulative oil recovery of 92%). In summary, SWAF under the optimum conditions is a promising method to increase the oil recovery from carbonate reservoirs.


Lab on a Chip ◽  
2021 ◽  
Author(s):  
Lei Zhao ◽  
Pengfei Niu ◽  
Eudald Casals ◽  
Muling Zeng ◽  
Chen Wu ◽  
...  

Acoustic induced nanoparticle patterning and location migration in inhomogeneous media formed in situ.


Author(s):  
Dong-Sheng Guo ◽  
Xiao-Bin Li ◽  
Hong-Na Zhang ◽  
Feng-Chen Li ◽  
Wen-Tao Su ◽  
...  

2019 ◽  
Vol 9 (12) ◽  
pp. 2539 ◽  
Author(s):  
Cristian Vacacela Gomez ◽  
Talia Tene ◽  
Marco Guevara ◽  
Gabriela Tubon Usca ◽  
Dennys Colcha ◽  
...  

In this study, we propose a novel approach to prepare few-layer graphene (FLG) dispersions, which is realized by exfoliating natural graphite flakes in a surfactant aqueous solution under hydrothermal treatment and liquid-phase exfoliation. In order to obtain stable and well-dispersed FLG dispersions, pristine graphite is hydrothermally expanded in a hexadecyltrimethylammonium bromide (CTAB) aqueous solution at 180 °C for 15 h, followed by sonication up to 3 h. In comparison to long-time sonication methods, the present method is significantly efficient, and most importantly, does not involve the use of an oxidizing agent and hazardous media, which will make it more competent in the scalable production of graphene.


Sign in / Sign up

Export Citation Format

Share Document