0607 Vapor Bubble Lift-off from a Heated Surface in Subcooled Pool Boiling

2007 ◽  
Vol 2007.3 (0) ◽  
pp. 135-136
Author(s):  
Hiroshi NAGAKURA ◽  
Hayato KUBOTA ◽  
Tomio OKAWA ◽  
Isao KATAOKA
2015 ◽  
Vol 137 (2) ◽  
Author(s):  
Naveenan Thiagarajan ◽  
Sushil H. Bhavnani ◽  
Vinod Narayanan

This paper reports bubble dynamics observed during pool boiling over microstructures with an asymmetric saw-tooth cross section, under reduced gravity. The periodic saw-toothed ratchets etched on a silicon surface include fabricated vapor bubble nucleation sites only on the shallow slope. Reduced gravity pool boiling experiments were conducted aboard a Boeing 727 aircraft carrying out parabolic maneuvers. The fluid used was FC-72, a highly wetting dielectric fluid used as a coolant for electronics. Under microgravity, it was observed that the bubble diameters were six times larger than in terrestrial gravity. Also, self-propelled sliding bubble motion along the surface of the saw teeth was observed in reduced gravity. The velocity of the sliding bubbles across the saw teeth, following lateral departure from the cavities, was measured to be as high as 27.4 mm/s. A model for the sliding bubble motion is proposed by attributing it to the force due to pressure differences that arise in the liquid film between the vapor bubble and the saw-toothed heated surface. The pressure difference is due to difference in the radius of curvature of the interface between the crest and trough of the saw teeth. The surface modification technique, which resulted in the sliding bubble motion, has the potential to alleviate dry-out caused due to stagnant vapor bubbles over heat sources under microgravity when the buoyancy forces are negligible compared to the surface tension forces.


Author(s):  
Naveenan Thiagarajan ◽  
Sushil H. Bhavnani ◽  
Vinod Narayanan

This paper reports bubble dynamics observed during pool boiling over micro-structures with an asymmetric saw-tooth cross-section, under reduced gravity. The periodic saw-toothed ratchets etched on a silicon surface include fabricated vapor bubble nucleation sites only on the shallow slope. Reduced gravity pool boiling experiments were conducted aboard a Boeing 727 aircraft (Zero-g Inc.) carrying out parabolic maneuvers to achieve reduced gravity. The fluid used was FC-72, a highly wetting dielectric fluid used as a coolant for electronics. Under microgravity, it was observed that the bubble diameters were six times larger than in terrestrial gravity. Also, self-propelled sliding bubble motion along the surface of the saw teeth was observed in reduced gravity. The velocity of the sliding bubbles across the saw teeth, following lateral departure from the cavities, was measured to be as high as 27.4 mm/s. A model for the sliding bubble motion is proposed by attributing it to the force due to pressure differences that arise in the liquid film between the vapor bubble and the saw-toothed heated surface. The pressure difference is due to difference in the radius of curvature of the interface between the crest and trough of the saw teeth. The surface modification technique has the potential to alleviate dry out caused due to vapor blanketing of heat sources in microgravity due to negligible buoyancy forces compared to the surface tension forces.


Author(s):  
Emilio Baglietto ◽  
Etienne Demarly ◽  
Ravikishore Kommajosyula

Advancement in the experimental techniques have brought new insights into the microscale boiling phenomena, and provide the base for a new physical interpretation of flow boiling heat transfer. A new modeling framework in Computational Fluid Dynamics has been assembled at MIT, and aims at introducing all necessary mechanisms, and explicitly tracks: (1) the size and dynamics of the bubbles on the surface; (2) the amount of microlayer and dry area under each bubble; (3) the amount of surface area influenced by sliding bubbles; (4) the quenching of the boiling surface following a bubble departure and (5) the statistical bubble interaction on the surface. The preliminary assessment of the new framework is used to further extend the portability of the model through an improved formulation of the force balance models for bubble departure and lift-off. Starting from this improved representation at the wall, the work concentrates on the bubble dynamics and dry spot quantification on the heated surface, which governs the Critical Heat Flux (CHF) limit. A new proposition is brought forward, where Critical Heat Flux is a natural limiting condition for the heat flux partitioning on the boiling surface. The first principle based CHF is qualitatively demonstrated, and has the potential to deliver a radically new simulation technique to support the design of advanced heat transfer systems.


Author(s):  
Sung Uk Ryu ◽  
Seok Kim ◽  
Dong-Jin Euh

In this study, the theoretical correlation for the lift-off diameter of bubbles generated on a horizontal tube is proposed. A force balance analysis in the direction normal to the heated surface at the moment of the bubble lift-off was performed to develop the model. According to the developed model, the bubble lift-off diameter depends strongly on the azimuthal position of the horizontal tube, the relative velocity between a bubble and surrounding liquid, the properties of the bubble, and the liquid. The developed model can be applicable to define the sub-model of wall heat flux partitioning for natural and forced convective boiling.


2003 ◽  
Author(s):  
H. S. Abarajith ◽  
D. M. Qiu ◽  
V. K. Dhir

The numerical simulation and experimental validations of the growth and departure of a single bubble on a horizontal heated surface during pool boiling under reduced gravity conditions have been performed here. A finite difference scheme is used to solve the equations governing mass, momentum and energy in the vapor liquid phases. The vapor-liquid interface is captured by level set method, which is modified to include the influence of phase change at the liquid-vapor interface. The effects of reduced gravity conditions, wall superheat and liquid subcooling and system pressure on the bubble diameter and growth period have been studied. The simulations are also carried out under both constant and time-varying gravity conditions to benchmark the solution with the actual experimental conditions that existed during the parabolic flights of KC-135 aircraft. In the experiments, a single vapor bubble was produced on an artificial cavity, 10 μm in diameter microfabricated on the polished silicon wafer, the wafer was heated electrically from the back with miniature strain gage type heating elements in order to control the nucleation superheat. The bubble growth period and the bubble diameter predicted from the numerical simulations have been found to compare well with the data from experiments.


Author(s):  
Ichiro Ueno ◽  
Yasusuke Hattori

‘Microbubble emission boiling,’ known as MEB, is a phenomenon that emerges in a narrow range of subcooled condition with a higher heat flux than critical heat flux (CHF) accompanying with microbubble emission from the heated surface. The authors focus on the condensing process of vapor bubbles in order to comprehend the mechanism of the microbubble formation and emitting processes. In order to simplify a surely complex boiling process, the authors try to extract an interaction between the vapor bubble and the subcooled bulk in a boiling phenomenon, that is, growing and collapsing processes of a vapor bubble ejected to subcooled liquid bath. Vapor bubble is produced by vapor generate system, and ejected to a bulk of saturated distilled water at a designated degree of subcooling. The degree of subcooling is varied from 0 to 50 K. The growing/collapsing of vapor bubble behavior is detected by employing a high-speed camera at frame rates up to 50,000 fps with a back-lighting system. In the present study, the process of microbubble emission as well as the process of the irrupting vapor bubbles to the subcooled bulk is compared to that in a MEB on a thin wire.


Sign in / Sign up

Export Citation Format

Share Document