vapor bubble
Recently Published Documents


TOTAL DOCUMENTS

430
(FIVE YEARS 66)

H-INDEX

31
(FIVE YEARS 4)

Author(s):  
Brendon Doran ◽  
Bin Zhang ◽  
Shayan Davani ◽  
Kojo Asiamah Osafo ◽  
Owen Sutka ◽  
...  

2021 ◽  
Vol 33 (12) ◽  
pp. 121706
Author(s):  
Dong Eok Kim ◽  
Jong Seok Oh

2021 ◽  
Author(s):  
Sandipan Banerjee ◽  
Yongsheng Lian ◽  
Yang Liu ◽  
Mark Sussman

Abstract Nucleate boiling has significant applications in earth gravity( in industrial cooling applications) and micro-gravity conditions (in space exploration, specifically in making space applications more compact). However, the effect of gravity on the growth rate and bubble size is not yet well understood. We perform numerical simulations of nucleate boiling using an adaptive Moment-of-Fluid (MoF) method for a single vapor bubble (water or Perfluoro-n-hexane) in saturated liquid for different gravity levels. Results concerning the growth rate of the bubble, specifically the departure diameter and departure time have been provided. The MoF method has been first validated by comparing results with a theoretical solution of vapor bubble growth in super-heated liquid without any heat-transfer from the wall. Next, bubble growth rate, bubble shape and heat transfer results under earth gravity, reduced gravity and micro-gravity conditions are reported and they are in good agreement with experiments. Finally, a new method is proposed for estimating the bubble diameter at different gravity levels. This method is based on an analysis of empirical data at different gravity values and using power-series curve fitting to obtain a generalized bubble growth curve irrespective of the gravity value. This method is shown to provide a good estimate of the bubble diameter for a specific gravity value and time.


2021 ◽  
Vol 2039 (1) ◽  
pp. 012035
Author(s):  
I V Vladyko ◽  
I P Malakhov ◽  
A S Surtaev ◽  
A A Pil’nik ◽  
A A Chernov

Abstract In this paper, the results of numerical calculations of a vapor bubble growth in superheated water at different pressures are presented. Modeling is based on a previously developed by the authors semi-analytical solution. The results are verified by experimental data obtained at atmospheric and subatmospheric pressures. The presented simulation results and experimental data are in good agreement. The advantage of the solution over the earlier ones (based on the thermal growth model) is shown.


2021 ◽  
Vol 33 (9) ◽  
pp. 096107
Author(s):  
T. Trummler ◽  
S. J. Schmidt ◽  
N. A. Adams

2021 ◽  
Author(s):  
Junpei Tabuchi ◽  
Yuki Narushima ◽  
Kenichi Katono ◽  
Tomio Okawa

Abstract Many studies have been conducted on droplet entrainment in an annular flow regime, but little is known about droplet entrainment caused by nucleate boiling. In this report, visualization results of droplet entrainment caused by nucleate boiling are described. We observed two processes of droplet entrainment. The first one causes bubble bursting at a water surface. The second one causes filament breakup which occurs when the vapor bubble reaches and collapses at the interface between air and liquid. From comparison of the phenomena for the two processes, we found that the diameters of the droplets and vapor bubbles were considerably different. Using the results of this research allows the effect of forced convection to be taken into account. In the future, we plan to expand the amount of data and develop a boiling entrainment model under forced convection conditions.


Sign in / Sign up

Export Citation Format

Share Document