Interactive effects of nitrogen fertilization and irrigation on grain yield, canopy temperature, and nitrogen use efficiency in overhead sprinkler-irrigated durum wheat

2016 ◽  
Vol 191 ◽  
pp. 54-65 ◽  
Author(s):  
Jarai Mon ◽  
K.F. Bronson ◽  
D.J. Hunsaker ◽  
K.R. Thorp ◽  
J.W. White ◽  
...  
2015 ◽  
Vol 52 (2) ◽  
pp. 314-329 ◽  
Author(s):  
ANITA IERNA ◽  
GRAZIA MARIA LOMBARDO ◽  
GIOVANNI MAUROMICALE

SUMMARYLimited information is available concerning the influence of nitrogen fertilization jointly on yield response, nitrogen use efficiency (NUE) and grain quality of durum wheat under semi-arid Mediterranean conditions. The study focused on evaluating, through a systematic study, over three seasons in southern Italy the effects of three nitrogen fertilization rates (0, 80 and 160 kg N ha−1– N0, N80and N160), on grain yield, yield components, nitrogen efficiency indices and grain quality characteristics of three durum wheat genotypes (‘Creso’, ‘Trinakria’ and ‘Line 25’) from different breeding eras to achieve a more sustainable fertilization management of the durum wheat crop. We found that nitrogen fertilization at 80 kg N ha−1was able to maximize the yield performances (2.1 t ha−1year–1) of the crop and keep NUE index at an acceptable level (16.3 kg kg−1). On the other hand, nitrogen fertilization at 160 kg N ha−1improved grain quality measured through protein (up to 14.3%) and dry gluten concentration (up to 12.8%), but had a detrimental effect on grain yield and nitrogen efficiency. Among the genotypes studied, ‘Trinakria’ showed the greatest potential to utilize nitrogen fertilization to improve grain yield and NUE (at N80) and quality (at N160), ‘Line 25’ made good use of N80both for yield and quality, whereas ‘Creso’ proved wholly unresponsive to nitrogen. The effect of N fertilization on grain yield and N use efficiency depends on rainfall distribution, giving the best results when about 80% of total rainfall occurred from sowing to heading. Overall, our data show that in seasons with regular rainfall in quantity and distribution, combining no more than 80 kg ha−1of nitrogen fertilization with genotypes characterized by a more efficient response to nitrogen, is a useful tool to improve the agronomic and quality performance of the crop, ensuring, at the same time, a more environment-friendly nitrogen fertilization.


Author(s):  
Teshome Mesfin ◽  
Serkalem Tamru ◽  
Yeshibir Aklilu ◽  
Dagne Bekele

Wheat requirement of nitrogen for plant growth, and crop yields and quality depends upon substantial N inputs. Therefore, a field experiment was carried out at Gimbichu district in 2017 and 2018 main cropping season with the objective of evaluating the overall performance of applying slow-release/UREAstable fertilizer over the conventional urea fertilizer for durum wheat production, and to determine optimum rates of slow-release urea fertilizer for wheat productivity. The treatments consisted of Control, 90 kg N ha-1 from conventional urea applied in split, 90 kg N ha-1 from UREAstable applied once at planting, 90 kg N ha-1 from UREAstable applied in split, 45 kg N ha-1 from UREAstable applied once at planting, 45 kg N ha-1 from UREA stable applied in split form, 135 kg N ha-1 from UREA stable applied in split form, 135 kg N ha-1 from conventional UREA applied in split form and 135 kg N ha-1 from UREAstable applied once at planting. The results revealed that plant height, spike length, Tiller number, grain yield, biomass yield, harvest index and grain and straw uptake were significantly (P<0.05) affected by the application of slow release and conventional urea fertilizer. The highest spike length (3.8cm), Tiller number (2.1), grain yield (2205 kg ha-1), biomass yield (6968 kg ha-1) and nitrogen grain straw uptake (35.6 kg N ha-1) were recorded from 135kg N ha-1 urea stable fertilizer applied in split form followed by application of 135 kg N ha-1 conventional urea fertilizer applied in split form. While, maximum straw nitrogen uptake was obtained from application of 135 kg N ha-1 conventional urea fertilizer applied in split form. Therefore, taking the findings of the present study consideration it may be concluding that farmers can use 135 kg N ha-1 UREAstable fertilizer to improve nitrogen use efficiency and productivity of wheat in the study area in addition to conventional urea fertilizer. However, further research may be required at various locations to come up with an inclusive recommendation.


2019 ◽  
Vol 46 (3) ◽  
pp. fpage-lpage
Author(s):  
Xiu ZHANG ◽  
Xing-Long DAI ◽  
Fei-Na ZHENG ◽  
Jin-Peng CHU ◽  
Li-Wei FEI ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document