Vernalisation in Australian spring canola explains variable flowering responses

2020 ◽  
Vol 258 ◽  
pp. 107968
Author(s):  
J.P.M. Whish ◽  
J.M. Lilley ◽  
M.J. Morrison ◽  
B. Cocks ◽  
M. Bullock
Keyword(s):  
2012 ◽  
Vol 104 (4) ◽  
pp. 1182-1188 ◽  
Author(s):  
D. C. Nielsen ◽  
S. A. Saseendran ◽  
L. Ma ◽  
L. R. Ahuja

2011 ◽  
Vol 354 (1-2) ◽  
pp. 239-250 ◽  
Author(s):  
Heidi Renkema ◽  
Amy Koopmans ◽  
Leanne Kersbergen ◽  
Julie Kikkert ◽  
Beverley Hale ◽  
...  

Weed Science ◽  
2003 ◽  
Vol 51 (6) ◽  
pp. 904-913 ◽  
Author(s):  
Robert H. Gulden ◽  
Steven J. Shirtliffe ◽  
A. Gordon Thomas

In western Canada, little is known about the seedbank ecology of volunteer canola. Therefore, integrated recommendations for the management of this weed are limited. In this study, we investigated the seedbank persistence and seedling recruitment of two spring canola genotype groups with different secondary seed dormancy potentials under contrasting tillage systems. The study was conducted at two locations with different soils in the Mixed Moist Grassland ecoregion of Saskatchewan. A single cohort seedbank was established in 1999 and was followed for 3 yr in successive wheat crops. In a separate laboratory study, the six canola genotypes examined were classified as those with high and those with medium potentials for the development of secondary seed dormancy (HD and MD, respectively). After one, two, and three winters, maximum persistence of 44, 1.4, and 0.2% of the original seedbank was observed among the treatments, respectively. In 2001, HD canola genotypes tended to exhibit 6- to 12-fold greater persistence than MD canola genotypes, indicating lower seedbank mortality in HD canola. Seedling recruitment of HD canola also was higher than MD canola when differences were observed between these genotype groups. Therefore, long-term seedbank persistence of canola can be reduced by growing genotypes with low inherent potential for the development of secondary seed dormancy. The proportion of persisting seeds tended to be higher under conventional tillage than under zero tillage because of lower seedbank mortality, but no clear distinction in seedbank persistence in terms of absolute time could be made between these two tillage systems. Volunteer canola seedling recruitment followed the pattern of a typical summer-annual weed, where seedling emergence was observed only during May and June.


2010 ◽  
Vol 33 (8) ◽  
pp. 1141-1154 ◽  
Author(s):  
Ö. Öztürk ◽  
S. Soylu ◽  
R. Ada ◽  
S. Gezgin ◽  
M. Babaoglu

2000 ◽  
Vol 80 (4) ◽  
pp. 889-898 ◽  
Author(s):  
M. Bom ◽  
G. J. Boland

Selected environmental, crop and pathogen variables were sampled weekly from winter and spring canola crops before and during flowering and evaluated for the ability to predict sclerotinia stem rot, caused by Sclertinia sclerotirum. Linear and nonlinear relationships were examined among variables but, because no strong correlations were observed between final disease incidence and any of the variables tested, a categorical approach (e.g., disease severity) was used instead. Disease severity in individual crops was categorized as low (< 20% diseased plants) or high (> 20% disease), and differences in weekly rainfall, soil moisture, crop height, percentage of petal infestation, and number of apothecia m−2 and clumps of apothecia m−2 were significantly associated with differences in disease severity within or between years. Two disease prediction models were compared for the ability to predict low or high disease severities using petal infestation alone, or petal infestation in combination with soil moisture. The model that included petal infestation and soil moisture predicted more fields correctly than the model using petal infestation alone, but the accuracy of both was affected by the timing of soil moisture measurements in relation to petal infestation, and threshold values used in discriminating categories of soil moisture and petal infestation. Key words: Brassica rapa, Brassica napus, Sclerotinia sclerotiorum, disease prediction


2008 ◽  
Vol 59 (4) ◽  
pp. 291 ◽  
Author(s):  
J. A. Kirkegaard ◽  
S. J. Sprague ◽  
H. Dove ◽  
W. M. Kelman ◽  
S. J. Marcroft ◽  
...  

The term dual-purpose canola describes the use of a canola crop for forage before seed production. It could potentially provide a profitable and flexible break-crop option for mixed farms, but there have been no studies to test the concept in Australia. We investigated the feasibility of using canola in this way in field experiments near Canberra, Australia, from 2004 to 2006, using European winter and mid–late maturing Australian spring canola varieties. Winter varieties sown from early March to mid-April produced 2.5–5.0 t/ha of biomass providing 0.3–3.5 t/ha of high-quality forage grazed by sheep in winter. The spring varieties produced similar amounts of vegetative biomass from April sowing but were unsuited to the earlier March sowing as they flowered in early winter and did not recover from grazing. The canola forage was readily eaten by sheep; alkane-based estimates of diet composition indicated that >85% of the organic matter intake consisted of canola. Canola forage was also highly digestible (86–88%) and Merino hoggets grew at 210 g/day from a dry matter intake of 1530 g DM/day. The canola generally recovered well when grazed in winter before bud elongation. Delays in flowering associated with heavy grazing ranged from 0 to 4 days when grazed before buds were visible, to 28 days if the crop had commenced flowering. Significant delays in flowering (>14 days) associated with winter grazing did not reduce seed yield or oil content when favourable spring conditions allowed compensatory growth. Yield loss was observed when winter and spring conditions were unfavourable for compensatory growth, or if grazing continued too late into spring (late September) irrespective of seasonal conditions. The yield loss was more than offset by the value of the grazed forage and the mean gross margin for dual-purpose canola over the four experiments was $240 to $500 higher than for grain-only canola depending on the value assumed for the forage. The study indicates there is considerable scope to capture value from grazing early-sown canola crops during winter without significant, uneconomic trade-offs with seed yield. Further investigations in other medium to high rainfall environments in southern Australia are warranted.


Sign in / Sign up

Export Citation Format

Share Document