seedling recruitment
Recently Published Documents


TOTAL DOCUMENTS

626
(FIVE YEARS 103)

H-INDEX

63
(FIVE YEARS 4)

2022 ◽  
Vol 505 ◽  
pp. 119912
Author(s):  
Scott Alexander McKendrick ◽  
Fiona Jean Ede ◽  
Rebecca Elizabeth Miller ◽  
Joe Greet

2022 ◽  
Vol 11 (1) ◽  
Author(s):  
Jing Wang ◽  
G. Geoff Wang ◽  
Rong Li ◽  
Yirong Sun ◽  
Lizhong Yu ◽  
...  

Abstract Background Granivore-mediated seed dispersal is susceptible to changes in seed availability and silvicultural management, which alters synzoochorous interactions in the antagonism-mutualism continuum and affects the seed dispersal effectiveness (SDE), and eventually, the plant recruitment. We conducted a whole-year study of seed addition to quantify the granivores-Korean pine (Pinus koraiensis) synzoochorous interactions and the SDE in the same secondary forests with two treatments. Both treatments had seed source limitations: one was caused by the disappearance of Korean pine due to the historical disturbance, the other by pinecone harvesting in Korean pine plantations adjacent to the secondary forests. Thinning with different intensities (control, 25%, and 50%) were also performed to further explore the synzoochorous interactions and SDE in response to silvicultural management in the second type of forests. Results Source limitation increased the proportion of pre- and post-dispersal seed predation, and made the granivores-Korean pine interaction shift more towards antagonism, with the estimated SDE of 2.31 and 3.60, respectively, for the secondary forests without and with Korean pine. Thinning with different intensities did not alleviate the reactions towards antagonism but altered SDE; granivores occurrence decreased, but the proportion of pre- and post-dispersal seed predation increased, resulting in a fivefold decreased seedling recruitment in 25% thinning (the lowest SDE of 0.26). Conclusion The source limitation coupling thinning biased the synzoochorous interactions more towards antagonism and significantly lowered granivore-mediated SDE, which limited the successful recruitment of Korean pine in secondary forests. Forest managers should control pinecone harvesting, protect the synzoochorous interaction, and take into account masting event for Korean pine regeneration in the future.


2021 ◽  
Vol 9 ◽  
Author(s):  
Tong Qiu ◽  
Shubhi Sharma ◽  
Christopher W. Woodall ◽  
James S. Clark

Anticipating the next generation of forests requires understanding of recruitment responses to habitat change. Tree distribution and abundance depend not only on climate, but also on habitat variables, such as soils and drainage, and on competition beneath a shaded canopy. Recent analyses show that North American tree species are migrating in response to climate change, which is exposing each population to novel climate-habitat interactions (CHI). Because CHI have not been estimated for either adult trees or regeneration (recruits per year per adult basal area), we cannot evaluate migration potential into the future. Using the Masting Inference and Forecasting (MASTIF) network of tree fecundity and new continent-wide observations of tree recruitment, we quantify impacts for redistribution across life stages from adults to fecundity to recruitment. We jointly modeled response of adult abundance and recruitment rate to climate/habitat conditions, combined with fecundity sensitivity, to evaluate if shifting CHI explain community reorganization. To compare climate effects with tree fecundity, which is estimated from trees and thus is "conditional" on tree presence, we demonstrate how to quantify this conditional status for regeneration. We found that fecundity was regulated by temperature to a greater degree than other stages, yet exhibited limited responses to moisture deficit. Recruitment rate expressed strong sensitivities to CHI, more like adults than fecundity, but still with substantial differences. Communities reorganized from adults to fecundity, but there was a re-coalescence of groups as seedling recruitment partially reverted to community structure similar to that of adults. Results provide the first estimates of continent-wide community sensitivity and their implications for reorganization across three life-history stages under climate change.


2021 ◽  
Vol 12 ◽  
Author(s):  
Berin D. E. Mackenzie ◽  
Tony D. Auld ◽  
David A. Keith ◽  
Mark K. J. Ooi

Fire seasonality (the time of year of fire occurrence) has important implications for a wide range of demographic processes in plants, including seedling recruitment. However, the underlying mechanisms of fire-driven recruitment of species with physiological seed dormancy remain poorly understood, limiting effective fire and conservation management, with insights hampered by common methodological practices and complex dormancy and germination requirements. We sought to identify the mechanisms that regulate germination of physiologically dormant species in nature and assess their sensitivity to changes in fire seasonality. We employed a combination of laboratory-based germination trials and burial-retrieval trials in natural populations of seven species of Boronia (Rutaceae) to characterize seasonal patterns in dormancy and fire-stimulated germination over a 2-year period and synthesized the observed patterns into a conceptual model of fire seasonality effects on germination. The timing and magnitude of seedling emergence was mediated by seasonal dormancy cycling and seasonal temperature cues, and their interactions with fire seasonality, the degree of soil heating expected during a fire, and the duration of imbibition. Primary dormancy was overcome within 4–10 months’ burial and cycled seasonally. Fire-associated heat and smoke stimulated germination once dormancy was alleviated, with both cues required in combination by some species. For some species, germination was restricted to summer temperatures (a strict seasonal requirement), while others germinated over a broader seasonal range of temperatures but exhibited seasonal preferences through greater responses at warmer or cooler temperatures. The impacts of fires in different seasons on germination can vary in strength and direction, even between sympatric congeners, and are strongly influenced by moisture availability (both the timing of post-fire rainfall and the duration soils stay moist enough for germination). Thus, fire seasonality and fire severity (via its effect on soil heating) are expected to significantly influence post-fire emergence patterns in these species and others with physiological dormancy, often leading to “germination interval squeeze.” Integration of these concepts into current fire management frameworks is urgently required to ensure best-practice conservation. This is especially pertinent given major, ongoing shifts in fire seasonality and rainfall patterns across the globe due to climate change and increasing anthropogenic ignitions.


Ecosphere ◽  
2021 ◽  
Vol 12 (12) ◽  
Author(s):  
Alberto García‐Rodríguez ◽  
Nuria Selva

Fire Ecology ◽  
2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Brittany Harris ◽  
Ariel Freidenreich ◽  
Eric Betancourt ◽  
Krishnaswarmy Jayachandran

Abstract Background Preserving fire-dependent ecosystems can mitigate biodiversity loss from urbanization, but prescribing fire is challenging near human habitation. Consequently, dereliction of fire-dependent forests is widespread in urban fragments. Natural disturbance-based management, like prescribing fire, is gaining global acceptance, yet it is unclear what affects prolonged exclusion have on the initial regeneration of isolated plant communities immediately after fire is reintroduced. We took advantage of the first prescribed low-intensity burn on a university pine rockland nature preserve in South Florida, USA, to gain insight. We measured the changes in plant community composition and vegetation cover 1 week before the prescribed burn, and again 1, 2, and 14 weeks after to assess the early and short-term stages of recovery. Results The fire consumed substantial leaf litter, surface fuels, and canopy leaves, increasing sunlight availability to the understory and exposing bare ground. Many woody plants perished within a week post-burn, particularly invasive shrubs; however, germinating and resprouting plant growth were rapid. By 14 weeks, vegetation covered more of the ground than before the burn, although the upper canopy remained relatively open. Rarefied species richness was recovered by 14 weeks but did not exceed pre-burn levels. Invasive species richness was also maintained post-burn. Despite no overall changes in the community structure, our correspondence analysis and analysis of similarity of the plant community suggest high species turnover from the pre-burn to the final community surveyed, with an intermediate turnover in between. Conclusion The endangered pine rockland ecosystem, like many fire-dependent ecosystems, is threatened by habitat loss and fire suppression. Managing urban preserves with periodic burns is essential for supporting habitat for endemic species while decreasing demands for manual and time-intensive maintenance. Our study demonstrates that seedling recruitment from early plantings of native species can contribute significantly and immediately to restoration efforts in a fire-excluded urban preserve; however, many changes were ephemeral. Supplemental burns are likely necessary to further reduce vegetation density and sustain changes to the community composition.


2021 ◽  
Author(s):  
◽  
Paul Michael Blaschke

<p>An ecological study of hill country landscapes in eastern Taranaki, New Zealand, was undertaken as part of a project concerning the implications of long-term soil mantle changes for sustainable land use. The study was undertaken in a 417 km2 area comprising uplifted and steeply dissected soft Tertiary sediments with a predominantly sandstone lithology. Rapid European settlement in the 1890s modified the natural vegetation cover greatly, so that most remaining forest in the study area occurs in patches surrounded by a matrix of pastoral land. Vegetational and successional patterns and environmental variation : The pattern of woody vegetation was investigated by extensive reconnaissance sampling incorporating semi-quantitative analysis of canopy cover, followed by intensive, environmentally stratified sampling. The vegetation was classified on a structural and floristic basis into 19 units of forest, treeland, scrub and shrubland. The effect of environmental variation on vegetation composition was investigated by reciprocal averaging ordination (DECORANA). The first ordination axis was correlated to vegetation structure and canopy height and was interpreted as a complex disturbance gradient relating to time since disturbance. The second and third axes were related to soil fertility and topographical gradients. Forest plots were dominated by Beilschmiedia tawa and Weinmannia racemosa and had basal area values of up to >250 m2/ha. Basal area, stem and seedling density varied greatly between vegetation structural groups. Regeneration of woody vegetation following various types of disturbance: The disturbance regime was comprehensively documented. Main factors of natural disturbance are landslide erosion and windthrow; main factors of cultural disturbance are direct clearance by felling and burning, and introduced animals. A chronology is presented of successional pathways for about 400 years following major disturbance. Succession proceeds through shrubland and scrub stages dominated by treeferns, Leptospermwn scoparium or other broadleaved woody shrubs, through treeland, to broadleaved forest dominated firstly by W. racemosa or Knightia excelsa, then by B. tawa. Podocarp trees are generally only prominent after a long period of uninterrupted succession. Seedling recruitment, mortality and growth were monitored for 2 years. Seedling dynamics varied considerably between and within sampling plots, some of which contained small exclosures that excluded possums and goats. The effects of introduced animals on seedling recruitment and vegetation growth is strongly modified by microtopography. Most dominant species showed continuous regeneration at the scale of the whole study area, despite local discontinuities. This pattern was consistent with a model of interrpted gap-phase regeneration, which may be widely applicable to New Zealand lowland forests. The vegetation turnover time is in the order of 150-250 years, a period consistent with comparable temperate forest ecosystems. The successional pathway is primarily dependent on topography, previous site history and location and area of disturbance. The existence of residual-soils on landslide scars, variations in plant propagule supply, and rapid loss of soil from steep slopes cleared for agriculture, all suggest that a rigid distinction between primary and secondary succession in the study area is not appropriate. Hillslope processes underlying vegetation and landscape change: Hillslope processes were studied in five 0.1 ha plots in which slope profiles were measured, vegetation and microtopography mapped in detail, vegetation age assessed and soil properties investigated. Ground surface age was assessed as an interpretation of the above data. Mean surface age was c. 450 years, but some swales had a surface age of several thousand years. There was a significant correlation between surface age and soil depth, soil depth increase being faster and continuing for much longer under forest than under pasture. Observations were made of near-surface erosion processes such as soil creep. A model of hillslope erosion is outlined, involving periodic evacuation of swales by landslides and refilling of swales by near-surface erosion. Evidence of past environments supports a fluvial origin for swales in an early Ohakean (glacial maximum) or pre-Ohakean period of high erosion. A concluding synthesis of vegetation, topography and soils emphasises the importance of selecting appropriate temporal and spatial scales at which to study landscape processes.</p>


2021 ◽  
Author(s):  
◽  
Paul Michael Blaschke

<p>An ecological study of hill country landscapes in eastern Taranaki, New Zealand, was undertaken as part of a project concerning the implications of long-term soil mantle changes for sustainable land use. The study was undertaken in a 417 km2 area comprising uplifted and steeply dissected soft Tertiary sediments with a predominantly sandstone lithology. Rapid European settlement in the 1890s modified the natural vegetation cover greatly, so that most remaining forest in the study area occurs in patches surrounded by a matrix of pastoral land. Vegetational and successional patterns and environmental variation : The pattern of woody vegetation was investigated by extensive reconnaissance sampling incorporating semi-quantitative analysis of canopy cover, followed by intensive, environmentally stratified sampling. The vegetation was classified on a structural and floristic basis into 19 units of forest, treeland, scrub and shrubland. The effect of environmental variation on vegetation composition was investigated by reciprocal averaging ordination (DECORANA). The first ordination axis was correlated to vegetation structure and canopy height and was interpreted as a complex disturbance gradient relating to time since disturbance. The second and third axes were related to soil fertility and topographical gradients. Forest plots were dominated by Beilschmiedia tawa and Weinmannia racemosa and had basal area values of up to >250 m2/ha. Basal area, stem and seedling density varied greatly between vegetation structural groups. Regeneration of woody vegetation following various types of disturbance: The disturbance regime was comprehensively documented. Main factors of natural disturbance are landslide erosion and windthrow; main factors of cultural disturbance are direct clearance by felling and burning, and introduced animals. A chronology is presented of successional pathways for about 400 years following major disturbance. Succession proceeds through shrubland and scrub stages dominated by treeferns, Leptospermwn scoparium or other broadleaved woody shrubs, through treeland, to broadleaved forest dominated firstly by W. racemosa or Knightia excelsa, then by B. tawa. Podocarp trees are generally only prominent after a long period of uninterrupted succession. Seedling recruitment, mortality and growth were monitored for 2 years. Seedling dynamics varied considerably between and within sampling plots, some of which contained small exclosures that excluded possums and goats. The effects of introduced animals on seedling recruitment and vegetation growth is strongly modified by microtopography. Most dominant species showed continuous regeneration at the scale of the whole study area, despite local discontinuities. This pattern was consistent with a model of interrpted gap-phase regeneration, which may be widely applicable to New Zealand lowland forests. The vegetation turnover time is in the order of 150-250 years, a period consistent with comparable temperate forest ecosystems. The successional pathway is primarily dependent on topography, previous site history and location and area of disturbance. The existence of residual-soils on landslide scars, variations in plant propagule supply, and rapid loss of soil from steep slopes cleared for agriculture, all suggest that a rigid distinction between primary and secondary succession in the study area is not appropriate. Hillslope processes underlying vegetation and landscape change: Hillslope processes were studied in five 0.1 ha plots in which slope profiles were measured, vegetation and microtopography mapped in detail, vegetation age assessed and soil properties investigated. Ground surface age was assessed as an interpretation of the above data. Mean surface age was c. 450 years, but some swales had a surface age of several thousand years. There was a significant correlation between surface age and soil depth, soil depth increase being faster and continuing for much longer under forest than under pasture. Observations were made of near-surface erosion processes such as soil creep. A model of hillslope erosion is outlined, involving periodic evacuation of swales by landslides and refilling of swales by near-surface erosion. Evidence of past environments supports a fluvial origin for swales in an early Ohakean (glacial maximum) or pre-Ohakean period of high erosion. A concluding synthesis of vegetation, topography and soils emphasises the importance of selecting appropriate temporal and spatial scales at which to study landscape processes.</p>


2021 ◽  
Author(s):  
Eli Ryan Bendall ◽  
Michael Bedward ◽  
Matthias Boer ◽  
Hamish Clarke ◽  
Luke Collins ◽  
...  

Abstract Elevated tree mortality and reduced recruitment of new trees linked to drought and fires has been reported across a range of forests over the last few decades. Forests that resprout new foliage epicormically from buds beneath the bark are considered highly resilient to disturbance, but are potentially at risk of elevated mortality, demographic shifts and changes to species composition due to synergistic effects of drought and fire. Despite this, the effects of drought-fire interactions on such forests remain largely unknown. We assessed the effects of drought severity and fire frequency on juvenile mortality, post-fire seedling recruitment and replacement of juvenile trees (balance of recruitment minus mortality) following fire. We compared dry ridgetop and wet gully assemblages across a temperate forest in southern Australia. Both forest types experienced higher rates of fire-induced juvenile mortality in areas that had experienced severe drought compared to moderate drought, though mortality rates were generally low across all drought and fire combinations. This result indicated that topographic position (i.e. wet gullies) did little to moderate juvenile mortality when exposed to severe drought plus fire. In wet forest, severe drought also reduced recruitment and replacement of dead juveniles by post-fire seedlings compared to moderate drought. In dry forest net-negative replacement increased with the severity of drought. Across both forest types, the total pool of juveniles was reduced under severe drought. Future increases in the frequency of coupled severe drought and fire will likely increase the susceptibility of resilient temperate forests to major changes in structure and function.


Sign in / Sign up

Export Citation Format

Share Document