scholarly journals Population genetic structure and migration patterns of the maize pathogenic fungus, Cercospora zeina in East and Southern Africa

2021 ◽  
Vol 149 ◽  
pp. 103527
Author(s):  
David L. Nsibo ◽  
Irene Barnes ◽  
Dennis O. Omondi ◽  
Mathews M. Dida ◽  
Dave K. Berger
2015 ◽  
Vol 106 (1) ◽  
pp. 114-123 ◽  
Author(s):  
X.-T. Tang ◽  
Y. Ji ◽  
Y.-W. Chang ◽  
Y. Shen ◽  
Z.-H. Tian ◽  
...  

AbstractWhile Liriomyza sativae (Diptera: Agromyzidae), an important invasive pest of ornamentals and vegetables has been found in China for the past two decades, few studies have focused on its genetics or route of invasive. In this study, we collected 288 L. sativae individuals across 12 provinces to explore its population genetic structure and migration patterns in China using seven microsatellites. We found relatively low levels of genetic diversity but moderate population genetic structure (0.05 < FST < 0.15) in L. sativae from China. All populations deviated significantly from the Hardy–Weinberg equilibrium due to heterozygote deficiency. Molecular variance analysis revealed that more than 89% of variation was among samples within populations. A UPGMA dendrogram revealed that SH and GXNN populations formed one cluster separate from the other populations, which is in accordance with STRUCTURE and GENELAND analyses. A Mantel test indicated that genetic distance was not correlated to geographic distance (r = −0.0814, P = 0.7610), coupled with high levels of gene flow (M = 40.1–817.7), suggesting a possible anthropogenic influence on the spread of L. sativae in China and on the effect of hosts. The trend of asymmetrical gene flow was from southern to northern populations in general and did not exhibit a Bridgehead effect during the course of invasion, as can be seen by the low genetic diversity of southern populations.


2017 ◽  
Vol 20 (1) ◽  
pp. 127-136
Author(s):  
Zhao-yun Lyu ◽  
Jun-rui Zhi ◽  
Yu-feng Zhou ◽  
Ze-hong Meng ◽  
Juan Wen

Genetics ◽  
1999 ◽  
Vol 152 (1) ◽  
pp. 441-450 ◽  
Author(s):  
Xin-Sheng Hu ◽  
Richard A Ennos

Abstract The classical island and one-dimensional stepping-stone models of population genetic structure developed for animal populations are extended to hermaphrodite plant populations to study the behavior of biparentally inherited nuclear genes and organelle genes with paternal and maternal inheritance. By substituting appropriate values for effective population sizes and migration rates of the genes concerned into the classical models, expressions for genetic differentiation and correlation in gene frequency between populations can be derived. For both models, differentiation for maternally inherited genes at migration-drift equilibrium is greater than that for paternally inherited genes, which in turn is greater than that for biparentally inherited nuclear genes. In the stepping-stone model, the change of genetic correlation with distance is influenced by the mode of inheritance of the gene and the relative values of long- and short-distance migration by seed and pollen. In situations where it is possible to measure simultaneously Fst for genes with all three types of inheritance, estimates of the relative rates of pollen to seed flow can be made for both the short- and long-distance components of migration in the stepping-stone model.


Sign in / Sign up

Export Citation Format

Share Document