An experimental investigation of burning rate and flame geometric parameters of tunnel fires under canyon cross wind and longitudinal ventilation

2021 ◽  
pp. 103474
Author(s):  
Richeng Ouyang ◽  
Wangda Zhao ◽  
Liliang Yang ◽  
Ao Jiao ◽  
Zhisheng Xu ◽  
...  
2011 ◽  
Vol 110-116 ◽  
pp. 1380-1386
Author(s):  
Amir Aziz ◽  
Wan Khairuddin bin Wan Ali

In this paper, experimental investigation of pressure exponent in burning rate of composite propellant was conducted. Four sets of different propellant compositions had been prepared with the combination of Ammonium Perchlorate (AP) as an oxidizer, Aluminum (Al) as fuel and Hydroxy-Terminated Polybutadiene (HTPB) as fuel and binder. For each mixture, HTPB binder was fixed at 15% and cured with isophorone diisocyanate (IPDI). By varying AP and Al, the effect of oxidizer-fuel mixture ratio (O/F) on the whole propellant can be determined. The propellant strands were manufactured using compression molded method and burnt in a strand burner using wire technique over a range of pressure from 1atm to 31atm. The results obtained shows that the pressure exponent n, increases with increasing O/F. The highest pressure exponent achieved was 0.561 for propellant p80 which has O/F ratio of 80/20.


2016 ◽  
Vol 99 ◽  
pp. 214-223 ◽  
Author(s):  
Shaogang Zhang ◽  
Xudong Cheng ◽  
Yongzheng Yao ◽  
Kai Zhu ◽  
Kaiyuan Li ◽  
...  

2012 ◽  
Vol 28 (6) ◽  
pp. 1389-1398 ◽  
Author(s):  
Timothy D. Manship ◽  
Stephen D. Heister ◽  
Patrick T. O'Neil

2020 ◽  
Vol 12 (5) ◽  
pp. 1817
Author(s):  
Lihua Zhai ◽  
Zhongxing Nong ◽  
Guanhong He ◽  
Baochao Xie ◽  
Zhisheng Xu ◽  
...  

Many pollutants are generated during tunnel fires, such as smoke and toxic gases. How to control the smoke generated by tunnel fires was focused on in this paper. A series of experiments were carried out in a 1:10 model tunnel with dimensions of 6.0 m × 1.0 m × 0.7 m. The purpose was to investigate the smoke layer thickness and the heat exhaust coefficient of the tunnel mechanical smoke exhaust mode under longitudinal wind. Ethanol was employed as fuel, and the heat release rates were set to be 10.6 kW, 18.6 kW, and 31.9 kW. The exhaust velocity was 0.32–3.16 m/s, and the longitudinal velocity was 0–0.47 m/s. The temperature profile in the tunnel was measured, and the buoyant flow stratification regime was visualized by a laser sheet. The results showed that the longitudinal ventilation leads to a secondary stratification of the smoke flow. In the ceiling extract tunnel under longitudinal ventilation, considering the research results of the smoke layer height and the heat exhaust coefficient, a better scheme for fire-producing pollutants was that an exhaust velocity of 1.26–2.21 m/s (corresponding to the actual velocity of 4.0–7.0 m/s) should be used. The longitudinal velocity should be 0.16–0.32 m/s (corresponding to the actual velocity of 0.5–1.0 m/s).


Sign in / Sign up

Export Citation Format

Share Document