gfrp composite
Recently Published Documents


TOTAL DOCUMENTS

368
(FIVE YEARS 129)

H-INDEX

26
(FIVE YEARS 8)

2021 ◽  
Vol 4 (4) ◽  
pp. 227-238
Author(s):  
Alper Karadis ◽  
Kabil Cetin ◽  
Taha Yasin Altıok ◽  
Ali Demir

Glass fiber reinforced polymer (GFRP) composites have been frequently used in engineering applications in recent years. GFRP composites produced by using glass fiber and epoxy resin have significant advantages such as high strength, lightness, and resistance against corrosion. However, GFRP composites exhibit a more brittle behavior than steel bars. This study aims to investigate both the experimental and numerical bending behavior of slabs with GFRP bars, steel bars, and polypropylene fiber. Within the scope of experimental studies, 5 slabs were built. Two slabs called SS-1 and SS-2 have only steel bars. Two slabs called GFRPS-1 and GFRPS-2 have only GFRP composite bars. A slab called GFRPS-F has both GFRP composite bars and polypropylene fibers. Polypropylene fibers are added to fresh concrete to improve the slab’s ductility. Three-point bending tests have been carried out on the slabs. All slabs are subjected to monotonic increasing distributed loading until collapse. As a result of tests, GFRPS slabs have carried %53 higher load than SS slabs. However, the SS slabs have exhibited a more ductile behavior compared to the GFRPS slabs. GFRPS slabs have more and larger crack width than other slabs. The addition of 5% polypropylene fiber by volume to concrete has a significant contributed to ductility and tensile behavior of slab. The average displacement value of GFRPS-F slab is 22.3% larger than GFRPS slab. GFRPS-F slab has better energy consumption capacity than other slabs. The energy consumption capacity of GFRPS-F slab is 1.34 and 1.38 times that of SS and GFRPS slabs, respectively. The number of cracks in GFRPS-F slab is fewer than GFRPS slabs. The fibers have contributed to the serviceability of the GFRPS slabs by limiting the displacement and the crack width. GFRPS-F exhibits elastoplastic behavior and almost returns to its first position when the loading is stopped. In addition, experimental results are verified with numerical results obtained by using Abaqus software. Finally, it is concluded that GFRP composite bars can be safely used in field concretes, concrete roads, prefabricated panel walls, and slabs.


Polymers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 4430
Author(s):  
Sankar Karuppannan Gopalraj ◽  
Ivan Deviatkin ◽  
Mika Horttanainen ◽  
Timo Kärki

There are forecasts for the exponential increase in the generation of carbon fibre-reinforced polymer (CFRP) and glass fibre-reinforced polymer (GFRP) composite wastes containing valuable carbon and glass fibres. The recent adoption of these composites in wind turbines and aeroplanes has increased the amount of end-of-life waste from these applications. By adequately closing the life cycle loop, these enormous volumes of waste can partly satisfy the global demand for their virgin counterparts. Therefore, there is a need to properly dispose these composite wastes, with material recovery being the final target, thanks to the strict EU regulations for promoting recycling and reusing as the highest priorities in waste disposal options. In addition, the hefty taxation has almost brought about an end to landfills. These government regulations towards properly recycling these composite wastes have changed the industries’ attitudes toward sustainable disposal approaches, and life cycle assessment (LCA) plays a vital role in this transition phase. This LCA study uses climate change results and fossil fuel consumptions to study the environmental impacts of a thermal recycling route to recycle and remanufacture CFRP and GFRP wastes into recycled rCFRP and rGFRP composites. Additionally, a comprehensive analysis was performed comparing with the traditional waste management options such as landfill, incineration with energy recovery and feedstock for cement kiln. Overall, the LCA results were favourable for CFRP wastes to be recycled using the thermal recycling route with lower environmental impacts. However, this contradicts GFRP wastes in which using them as feedstock in cement kiln production displayed more reduced environmental impacts than those thermally recycled to substitute virgin composite production.


Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6501
Author(s):  
Fatima Ghassan Alabtah ◽  
Elsadig Mahdi ◽  
Marwan Khraisheh

In this study, we report on the corrosion behavior of hybrid steel/glass fiber-reinforced polymer (GFRP) composite pipes under harsh corrosive conditions for prolonged durations. Specimens were immersed in highly concentrated solutions of hydrochloric acid, sodium chloride, and sulfuric acid for durations up to one year. Detailed qualitative analysis using scanning electron microscopy (SEM), X-ray diffraction analysis (XRD), and energy-dispersive X-ray spectroscopy (EDX) is presented. It is shown that the hybrid pipes have excellent corrosion resistance with a corrosion rate of less than 1% of the corrosion rate for conventional steel pipes. That low corrosion rate can be attributed to the formation of pores in the GFRP layer due to increased absorption and saturation moisture in the material with increased soaking time. This can be reduced or even prevented through a more controlled process for fabricating the protective layers. These promising results call for more utilization of GFRP protective layers in novel design concepts to control corrosion.


2021 ◽  
pp. 11560-11567
Author(s):  
Sravanthi K., V. Mahesh, B. Nageswara Rao

Wind energy is one prominent solution to mitigate the increasing energy demand. Composite materials are exhibiting enormous advantages with their tailor-made properties. With the development of renewable energy power generation, the issue of blade vibration reduction has gotten a lot of technical attention. It has become an essential technique for blade analysis and design. Various attempts were recorded to reduce the vibration of the blade and enhance its natural frequencies. The present work aimed to characterize the mechanical properties of the GFRP composite material and the GFRP composite with 4wt% of the MWCNT filler. Both hybrid and non-hybrid GFRP are subjected to characterization, with the same free vibration analysis of NACA 63-415 wind turbine blades being analyzed. The study results revealed that the hybrid GFRP has more stiffness, which causes it to enhance the free vibrations in all mode shapes.


2021 ◽  
Vol 79 (9) ◽  
pp. 897-904
Author(s):  
Sanjaya Sahoo ◽  
Srinivas Kuchipudi ◽  
R. Narasimha Rao ◽  
Manoj Buragohain ◽  
Ch. Sri Chaitanya

Adhesively bonded interfaces of glass fiber– reinforced plastics (GFRP) composite to rubber and rubber to propellant were investigated for planar interfacial defects with a spatial resolution of 100 μm. Single-sided low-field nuclear magnetic resonance (NMR) with a magnetic field strength of 0.3 T (12.88 MHz proton frequency) has been used for noninvasive inspection of planar defects in GFRP-based multilayered composite structures. Further, in this paper, the application of low-field NMR for adhesive liner thickness measurement is also demonstrated. The investigation revealed applicability of single-sided low-field NMR for onsite field applications. Results were compared with other nondestructive evaluation (NDE) techniques: acousto-ultrasonic and radiographic testing (RT). It is observed that single-sided low-field NMR is an excellent NDE tool to study adhesive bonds and defects such as debonding, variations in thickness to accuracies ranging from 50 to 200 μm, and degradation. In comparison with the acousto-ultrasonic technique and RT, single-sided low-field NMR is observed to be more sensitive.


Sign in / Sign up

Export Citation Format

Share Document