scholarly journals A review of studies on estimating the discharge coefficient of flow control structures based on the soft computing models

Author(s):  
Masoud Haghbin ◽  
Ahmad Sharafati
2021 ◽  
Vol 79 ◽  
pp. 101913
Author(s):  
Zhanat Dayev ◽  
Aiat Kairakbaev ◽  
Kaan Yetilmezsoy ◽  
Majid Bahramian ◽  
Parveen Sihag ◽  
...  

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Masoud Haghbin ◽  
Ahmad Sharafati ◽  
Davide Motta ◽  
Nadhir Al-Ansari ◽  
Mohamadreza Hosseinian Moghadam Noghani

AbstractThe application of soft computing (SC) models for predicting environmental variables is widely gaining popularity, because of their capability to describe complex non-linear processes. The sea surface temperature (SST) is a key quantity in the analysis of sea and ocean systems, due to its relation with water quality, organisms, and hydrological events such as droughts and floods. This paper provides a comprehensive review of the SC model applications for estimating SST over the last two decades. Types of model (based on artificial neural networks, fuzzy logic, or other SC techniques), input variables, data sources, and performance indices are discussed. Existing trends of research in this field are identified, and possible directions for future investigation are suggested.


2021 ◽  
Vol 15 (1) ◽  
pp. 1002-1015
Author(s):  
Zhenlong Hu ◽  
Hojat Karami ◽  
Alireza Rezaei ◽  
Yashar DadrasAjirlou ◽  
Md. Jalil Piran ◽  
...  

2021 ◽  
Author(s):  
Hamid Darabi ◽  
Sedigheh Mohamadi ◽  
Zahra Karimidastenaei ◽  
Ozgur Kisi ◽  
Mohammad Ehteram ◽  
...  

AbstractAccurate modeling and prediction of suspended sediment load (SSL) in rivers have an important role in environmental science and design of engineering structures and are vital for watershed management. Since different parameters such as rainfall, temperature, and discharge with the different lag times have significant effects on the SSL, quantifying and understanding nonlinear interactions of the sediment dynamics has always been a challenge. In this study, three soft computing models (multilayer perceptron (MLP), adaptive neuro-fuzzy system (ANFIS), and radial basis function neural network (RBFNN)) were used to predict daily SSL. Four optimization algorithms (sine–cosine algorithm (SCA), particle swarm optimization (PSO), firefly algorithm (FFA), and bat algorithm (BA)) were used to improve the capability of SSL prediction of the models. Data from gauging stations at the mouth of the Kasilian and Talar rivers in northern Iran were used in the analysis. The selection of input combinations for the models was based on principal component analysis (PCA). Uncertainty in sequential uncertainty fitting (SUFI-2) and performance indicators were used to assess the potential of models. Taylor diagrams were used to visualize the match between model output and observed values. Assessment of daily SSL predictions for Talar station revealed that ANFIS-SCA yielded the best results (RMSE (root mean square error): 934.2 ton/day, MAE (mean absolute error): 912.2 ton/day, NSE (Nash–Sutcliffe efficiency): 0.93, PBIAS: 0.12). ANFIS-SCA also yielded the best results for Kasilian station (RMSE: 1412.10 ton/day, MAE: 1403.4 ton/day, NSE: 0.92, PBIAS: 0.14). The Taylor diagram confirmed that ANFIS-SCA achieved the best match between observed and predicted values for various hydraulic and hydrological parameters at both Talar and Kasilian stations. Further, the models were tested in Eagel Creek Basin, Indiana state, USA. The results indicated that the ANFIS-SCA model reduced RMSE by 15% and 21% compared to the MLP-SCA and RBFNN-SCA models in the training phase. Comparing models performance indicated that the ANFIS-SCA model could decrease MAE error compared to ANFIS-BA, ANFIS-PSO, ANFIS-FFA, and ANFIS models by 18%, 32%, 37%, and 49% in the training phase, respectively. The results indicated that the integration of optimization algorithms and soft computing models can improve the ability of models for predicting SSL. Additionally, the hybridization of soft computing models with optimization algorithms can decrease the uncertainty of models.


2014 ◽  
Vol 2014 ◽  
pp. 1-3 ◽  
Author(s):  
Yudong Zhang ◽  
Saeed Balochian ◽  
Vishal Bhatnagar

Author(s):  
Jozo Dujmović ◽  
Guy De Tré ◽  
Navchetan Singh ◽  
Daniel Tomasevich ◽  
Ryoichi Yokoohji

Sign in / Sign up

Export Citation Format

Share Document