scholarly journals Stilbene compounds are specific inhibitors of the superoxide anion generation catalyzed by xanthine oxidase

2021 ◽  
Vol 12 ◽  
pp. 100146
Author(s):  
Noriyoshi Masuoka
2015 ◽  
Vol 166 ◽  
pp. 270-274 ◽  
Author(s):  
Noriyoshi Masuoka ◽  
Ken-ichi Nihei ◽  
Ayami Maeta ◽  
Yoshiro Yamagiwa ◽  
Isao Kubo

1999 ◽  
Vol 10 (3) ◽  
pp. 538-544
Author(s):  
WILFRIED GWINNER ◽  
JENS PLASGER ◽  
RALF P. BRANDES ◽  
BIRGIT KUBAT ◽  
MATTHIAS SCHULZE ◽  
...  

Abstract. Passive Heymann nephritis (PHN) in rats is a model of human membranous nephropathy characterized by formation of subepithelial immune deposits in the glomerular capillary wall and complement activation. Oxygen radicals have been implicated in the subsequent glomerular damage which leads to proteinuria. This study examines the involvement of xanthine oxidase in this process. Xanthine oxidase activity was increased nearly twofold in glomeruli isolated 1 and 12 d after induction of PHN, and this was associated with increased glomerular superoxide anion generation. Analysis of glomerular samples by Northern and Western blotting revealed no quantitative changes in xanthine oxidoreductase expression in PHN, suggesting conversion of xanthine dehydrogenase to the oxidase form as the cause of increased activity. Treatment of rats with tungsten, an inhibitor of xanthine oxidase, before induction of PHN resulted in a marked decrease in glomerular xanthine oxidase activity and superoxide anion generation, and decreased proteinuria by 80% (day 12: 423 ± 245 mg/d in PHN versus 78 ± 53 mg/d in tungsten-treated PHN animals, P < 0.01). These findings point to a pivotal role of xanthine oxidase in the pathophysiology of PHN and could be of importance in the therapy of human membranous nephropathy.


2000 ◽  
Vol 1524 (2-3) ◽  
pp. 220-227 ◽  
Author(s):  
Daekyung Kim ◽  
Atsushi Nakamura ◽  
Tarou Okamoto ◽  
Nobukazu Komatsu ◽  
Tatsuya Oda ◽  
...  

Marine Drugs ◽  
2021 ◽  
Vol 19 (1) ◽  
pp. 38
Author(s):  
Chi-Jen Tai ◽  
Chiung-Yao Huang ◽  
Atallah F. Ahmed ◽  
Raha S. Orfali ◽  
Walied M. Alarif ◽  
...  

Chemical investigation of a Red Sea Spongia sp. led to the isolation of four new compounds, i.e., 17-dehydroxysponalactone (1), a carboxylic acid, spongiafuranic acid A (2), one hydroxamic acid, spongiafuranohydroxamic acid A (3), and a furanyl trinorsesterpenoid 16-epi-irciformonin G (4), along with three known metabolites (−)-sponalisolide B (5), 18-nor- 3,17-dihydroxy-spongia-3,13(16),14-trien-2-one (6), and cholesta-7-ene-3β,5α-diol-6-one (7). The biosynthetic pathway for the molecular skeleton of 1 and related compounds was postulated for the first time. Anti-inflammatory activity of these metabolites to inhibit superoxide anion generation and elastase release in N-formyl-methionyl-leucyl phenylalanine/cytochalasin B (fMLF/CB)-induced human neutrophil cells and cytotoxicity of these compounds toward three cancer cell lines and one human dermal fibroblast cell line were assayed. Compound 1 was found to significantly reduce the superoxide anion generation and elastase release at a concentration of 10 μM, and compound 5 was also found to display strong inhibitory activity against superoxide anion generation at the same concentration. Due to the noncytotoxic activity and the potent inhibitory effect toward the superoxide anion generation and elastase release, 1 and 5 can be considered to be promising anti-inflammatory agents.


2019 ◽  
Vol 193 ◽  
pp. 100-108 ◽  
Author(s):  
Manuel I. Azócar ◽  
Romina Alarcón ◽  
Antonio Castillo ◽  
Jenny M. Blamey ◽  
Mariana Walter ◽  
...  

1998 ◽  
Vol 56 (3) ◽  
pp. 285-288 ◽  
Author(s):  
Shuxian Hu ◽  
Phillip K Peterson ◽  
Chun C Chao

Sign in / Sign up

Export Citation Format

Share Document