human neutrophils
Recently Published Documents


TOTAL DOCUMENTS

5420
(FIVE YEARS 412)

H-INDEX

149
(FIVE YEARS 10)

2022 ◽  
Vol 12 ◽  
Author(s):  
Brian A. Pettygrove ◽  
Heidi J. Smith ◽  
Kyler B. Pallister ◽  
Jovanka M. Voyich ◽  
Philip S. Stewart ◽  
...  

The goal of this study was to quantify the variability of confocal laser scanning microscopy (CLSM) time-lapse images of early colonizing biofilms to aid in the design of future imaging experiments. To accomplish this a large imaging dataset consisting of 16 independent CLSM microscopy experiments was leveraged. These experiments were designed to study interactions between human neutrophils and single cells or aggregates of Staphylococcus aureus (S. aureus) during the initial stages of biofilm formation. Results suggest that in untreated control experiments, variability differed substantially between growth phases (i.e., lag or exponential). When studying the effect of an antimicrobial treatment (in this case, neutrophil challenge), regardless of the inoculation level or of growth phase, variability changed as a frown-shaped function of treatment efficacy (i.e., the reduction in biofilm surface coverage). These findings were used to predict the best experimental designs for future imaging studies of early biofilms by considering differing (i) numbers of independent experiments; (ii) numbers of fields of view (FOV) per experiment; and (iii) frame capture rates per hour. A spreadsheet capable of assessing any user-specified design is included that requires the expected mean log reduction and variance components from user-generated experimental results. The methodology outlined in this study can assist researchers in designing their CLSM studies of antimicrobial treatments with a high level of statistical confidence.


2022 ◽  
Author(s):  
Valeria Timganova ◽  
Svetlana Zamorina ◽  
Maria Bochkova ◽  
Anton Nechaev ◽  
Pavel Khramtsov ◽  
...  

Graphene oxide (GO) is very useful for biomedicine, due to its physicochemical properties; therefore, its interaction with cells of the immune system has beenextensively studied. Many studies have aimed toreduce the undesirable effects of GO through chemical modification, including through polyethylene glycol (PEG) coating. Neutrophils are the first to respond to foreign object invasion in the body. Their main functions are the uptake and destruction of foreign particles, including with the help of reactive oxygen species (ROS).Our study aimed to investigate theengulfment of unmodified graphene oxide (GO) and graphene oxide coated with polyethylene glycol (GO-PEG) by human neutrophils and the effect of nanosheets on the production of ROS.We used sheets of GO (Ossila, Great Britain, average plate size 1-5 μm) and GO-PEG (569 ± 14 nm, PEG coating≈ 20%) at concentrations of 12.5μg/mL, 25μg/mL, and 50 μg/mL. The uptake of nanosheets was assessed by flow cytometry, taking into account the level of background adhesion of nanoparticles. ROS production was evaluated by luminol-dependent chemiluminescence (LCL).It was found that GO (12.5μg/mL, 25μg/mL, and 50 μg/mL) was actively internalized by neutrophils, while the uptake of GO-PEG was not detected. GO and GO-PEG particles (25 μg/mLand 50 μg/mL) reduced the total production of ROS by human leukocytes.Thus, the modifying of GOnanosheets with PEG resulted in the abolishment of their active uptake by neutrophils but did not affect the GO inhibitory effect on their oxidative activity. Keywords: graphene oxide surface modification, pegylated graphene oxide nanosheets, nanoparticle uptake, human neutrophils, of reactive oxygen species


Antioxidants ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 123
Author(s):  
Yen-Tung Lee ◽  
Yu-Li Chen ◽  
Yi-Hsuan Wu ◽  
Ih-Sheng Chen ◽  
Hsun-Shuo Chang ◽  
...  

The pathogenesis of acute respiratory distress syndrome (ARDS) is very complex. Patients with ARDS still suffer high mortality rates. Infiltration and activation of neutrophils in lungs are critical pathogenic factors in ARDS. In this study, we demonstrate that meso-dihydroguaiaretic acid (MDGA), a natural lignan, inhibits inflammatory responses in human neutrophils and ameliorates ARDS in mice. MDGA inhibited superoxide anion generation and elastase release in various G-protein coupled receptor agonists-induced human neutrophils. However, MDGA did not alter superoxide anion generation and elastase activity in cell-free systems. These results suggest that the anti-inflammatory effects of MDGA are mediated by regulating cellular signals in human neutrophils. In consistent with this, MDGA suppressed phosphorylation of extracellular signal-regulated kinase and c-Jun N-terminal kinase in activated human neutrophils. Moreover, MDGA inhibited CD11b expression and adhesion in activated human neutrophils. Interestingly, MDGA reduced reactive oxygen species (ROS) generation but not superoxide anion generation in protein kinase C (PKC) activator-induced human neutrophils, suggesting that MDGA may also have ROS scavenging ability. Indeed, MDGA showed strong free radical scavenging activity in cell-free assays. Significantly, MDGA suppressed PKC-induced neutrophil extracellular trap formation. Additionally, treatment of MDGA attenuated neutrophil infiltration and lung damage on lipopolysaccharide-induced ARDS in mice. In conclusion, our results demonstrate that MDGA has anti-neutrophilic inflammatory effects and free-radical scavenging activity. We also suggest that MDGA has potential to serve as a lead for developing new therapeutics to treat ARDS.


2022 ◽  
Vol 12 ◽  
Author(s):  
Ekaterina A. Golenkina ◽  
Svetlana I. Galkina ◽  
Olga Pletjushkina ◽  
Boris Chernyak ◽  
Tatjana V. Gaponova ◽  
...  

Leukotriene synthesis in neutrophils is critical for host survival during infection. In particular, leukotriene B4 (LTB4) is a powerful neutrophil chemoattractant that plays a crucial role in neutrophil swarming. In this work, we demonstrated that preincubation of human neutrophils with Salmonella typhimurium strongly stimulated LTB4 production induced by the bacterial chemoattractant, peptide N-formyl-L-methionyl-L-leucyl-l-phenylalanine (fMLP), while the reverse sequence of additions was ineffective. Preincubation with bacterial lipopolysaccharide or yeast polysaccharide zymosan particles gives weaker effect on fMLP-induced LTB4 production. Activation of 5-lipoxygenase (5-LOX), a key enzyme in leukotrienes biosynthesis, depends on rise of cytosolic concentration of Ca2+ and on translocation of the enzyme to the nuclear membrane. Both processes were stimulated by S. typhimurium. With an increase in the bacteria:neutrophil ratio, the transformation of LTB4 to ω-OH-LTB4 was suppressed, which further supported increased concentration of LTB4. These data indicate that in neutrophils gathered around bacterial clusters, LTB4 production is stimulated and at the same time its transformation is suppressed, which promotes neutrophil swarming and elimination of pathogens simultaneously.


Tuberculosis ◽  
2022 ◽  
pp. 102165
Author(s):  
Hitoshi Nakayama ◽  
Eriko Oshima ◽  
Tomomi Hotta ◽  
Kei Hanafusa ◽  
Kota Nakamura ◽  
...  
Keyword(s):  

2021 ◽  
Author(s):  
Delu Che ◽  
Xiangjin Song ◽  
Lei Zhang ◽  
Xueshan Du ◽  
Yi Zheng ◽  
...  

Abstract Psoriasis is a chronic inflammatory skin disease. Mast cells significantly increase and activate in the lesions and are involved in psoriatic inflammation. Neuroblast differentiation-associated protein (AHNAK) mainly express in skin, esophagus and kidney, which participates in the differentiation of neurons, the formation of cytoskeletal structure muscular regeneration and the calcium homeostasis process. Whether AHNAK is involved in mast cell activation is unclear, and the mechanisms of AHNAK induced skin inflammation also needs investigation. To investigate whether Neuroblast differentiation-associated protein derived polypeptides: AHNAK(5758-5775) activates mast cells and induces skin inflammation contributing to psoriasis, wild-type mice were treated with AHNAK(5758-5775) to observe inflammatory cells infiltrated in skin and cytokines release in vivo. Release of inflammatory mediators by mouse primary mast cells, LAD2 cells and human neutrophils were measured in vitro. Neutrophils and mast cells were co-cultured to verify AHNAK(5758-5775)’ role in inflammation. Molecular docking analysis, molecular dynamics simulation and siRNA transfection were used to prove the receptor of AHNAK(5758-5775). AHNAK(5758-5775) caused skin inflammation in WT mice by recruitment of neutrophils and cytokines release. Moreover, AHNAK(5758-5775) does not directly activate neutrophils PPD, while it is via mast cells. ST2 seems to be a key receptor meditating the activation effect of AHNAK(5758-5775) on mast cells and lead to cytokines release. Altogether, we proposed the novel polypeptide: AHNAK(5758-5775), which might induce inflammation and participated in the occurrence and development of psoriasis by activating mast cells.


2021 ◽  
pp. 1-14
Author(s):  
Gunnar Pejler ◽  
Sultan Alanazi ◽  
Mirjana Grujic ◽  
Jeremy Adler ◽  
Anna-Karin Olsson ◽  
...  

Previous research has indicated an intimate functional communication between mast cells (MCs) and neutrophils during inflammatory conditions, but the nature of such communication is not fully understood. Activated neutrophils are known to release DNA-containing extracellular traps (neutrophil extracellular traps [NETs]) and, based on the known ability of tryptase to interact with negatively charged polymers, we here hypothesized that tryptase might interact with NET-contained DNA and thereby regulate NET formation. In support of this, we showed that tryptase markedly enhances NET formation in phorbol myristate acetate-activated human neutrophils. Moreover, tryptase was found to bind vividly to the NETs, to cause proteolysis of core histones and to cause a reduction in the levels of citrullinated histone-3. Secretome analysis revealed that tryptase caused increased release of numerous neutrophil granule compounds, including gelatinase, lactoferrin, and myeloperoxidase. We also show that DNA can induce the tetrameric, active organization of tryptase, suggesting that NET-contained DNA can maintain tryptase activity in the extracellular milieu. In line with such a scenario, DNA-stabilized tryptase was shown to efficiently degrade numerous pro-inflammatory compounds. Finally, we showed that tryptase is associated with NET formation in vivo in a melanoma setting and that NET formation in vivo is attenuated in mice lacking tryptase expression. Altogether, these findings reveal that NET formation can be regulated by MC tryptase, thus introducing a novel mechanism of communication between MCs and neutrophils.


Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 16
Author(s):  
Sylwia Zielińska ◽  
Adam Matkowski ◽  
Karolina Dydak ◽  
Monika Ewa Czerwińska ◽  
Magdalena Dziągwa-Becker ◽  
...  

In this work we developed a bi-functional Bacterial-Nano-Cellulose (BNC) carrier system for cell cultures of Chelidonium majus—a medicinal plant producing antimicrobial compounds. The porous BNC was biosynthesized for 3, 5 or 7 days by the non-pathogenic Komagataeibacter xylinus bacteria and used in three forms: (1) Without removal of K. xylinus cells, (2) partially cleaned up from the remaining K. xylinus cells using water washing and (3) fully purified with NaOH leaving no bacterial cells remains. The suspended C. majus cells were inoculated on the BNC pieces in liquid medium and the functionalized BNC was harvested and subjected to scanning electron microscopy observation and analyzed for the content of C. majus metabolites as well as to antimicrobial assays and tested for potential proinflammatory irritating activity in human neutrophils. The highest content and the most complex composition of pharmacologically active substances was found in 3-day-old, unpurified BNC, which was tested for its bioactivity. The assays based on the IL-1β, IL-8 and TNF-α secretion in an in vitro model showed an anti-inflammatory effect of this particular biomatrix. Moreover, 3-day-old-BNC displayed antimicrobial and antibiofilm activity against Staphylococcus aureus, Pseudomonas aeruginosa and Candida albicans. The results of the research indicated a possible application of such modified composites, against microbial pathogens, especially in local surface infections, where plant metabolite-enriched BNC may be used as the occlusive dressing.


Toxins ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 908
Author(s):  
João Alfredo Moraes ◽  
Genilson Rodrigues ◽  
Daniel Guimarães-Bastos ◽  
Vany Nascimento-Silva ◽  
Erik Svensjö ◽  
...  

The significant incidence of deforestation in South America culminates in the contact of humans with typical forests species. Among these species, one may highlight Lonomia obliqua caterpillar, which, when touched by humans, can poison them through their bristles. Therefore, better acknowledging the mechanisms involved in envenomation caused by Lonomia obliqua caterpillar bristle extract (LOCBE) may contribute to further treatments. Recently, we demonstrated that LOCBE induces a pro-inflammatory profile in endothelial cells; thus, we decided to investigate the effects of LOCBE on human polymorphonuclear neutrophils (PMN), which are the first leukocytes that migrate to the inflammatory focus. Our results showed that treatment with LOCBE induced PMN chemotaxis together with alterations in actin cytoskeleton and focal adhesion kinase (FAK) activation, favoring migration. Concurrently, LOCBE induced PMN adhesion to matrix proteins, such as collagen IV, fibronectin, and fibrinogen. Moreover, we observed that LOCBE attenuated PMN apoptosis and increased reactive oxygen species (ROS) production together with nuclear factor kB (NF-κB) activation—a redox-sensitive transcription factor—as well as interleukin (IL)-1β and IL-8 release. We call attention to the ROS-dependent effect of LOCBE on increased cell migration once an antioxidant treatment reverted it. In summary, we report that LOCBE activates PMN, inducing pro-inflammatory responses modulated by ROS.


2021 ◽  
Vol 3 (12) ◽  
Author(s):  
Magdalena Smolarz ◽  
Marcin Zawrotniak ◽  
Dorota Satała ◽  
Maria Rapala-Kozik

Neutrophils represent the first line of innate host defense. The ability to inhibit the development of infections is associated with the involvement of several fighting strategies. The still poorly understood mechanism is netosis, involving the release of Extracellular Neutrophil Traps (NETs). NETs are complexes of chromosomal DNA and granule content. Such a web-like structure inhibits the spread of invaders. Netosis plays a significant role in combating Candida albicans infections. It has been shown that several factors, composing C. albicans cell surface mediate NETs production. However, the development of difficult to eradicate fungal infection is associated with the formation of the biofilm structure, which partially protects the pathogen cells from contact with the host’s immune system. One of the reasons for the creation of a such protective environment is the production of the extracellular matrix (ECM). The major components of the C. albicans ECM layer are lipids, proteins, carbohydrates but also extracellular nucleic acids, among which we observed a significant RNA content. Considering that the ECM consisting of RNA molecules is one of the first lines of contact between biofilms and neutrophils, our current studies aimed to assess the potential role of extracellular RNA in the triggering of the netosis process by human neutrophils in vitro. We showed that RNA purified from C. albicans biofilm structure and the whole cells have the capability to induction of ROS-dependent netosis pathway. Additionally, cell migration analysis indicate that RNA molecules may also be an effective chemotactic agent. This work was supported by NCN (2019/33/B/NZ6/02284).


Sign in / Sign up

Export Citation Format

Share Document