The role of cell wall polysaccharides disassembly in Lasiodiplodia theobromae-induced disease occurrence and softening of fresh longan fruit

2021 ◽  
Vol 351 ◽  
pp. 129294
Author(s):  
Yazhen Chen ◽  
Shen Zhang ◽  
Hetong Lin ◽  
Wangjin Lu ◽  
Hui Wang ◽  
...  
2013 ◽  
Vol 78 (3) ◽  
pp. 417-427 ◽  
Author(s):  
Estelle Bonnin ◽  
Marc Lahaye

Cell walls consist of polysaccharide assemblies (pectin, hemicelluloses and cellulose), whose structure and interactions vary depending on fruit genetic, and its stage and conditions of development. The establishment and the structural reorganization of the assemblies result from enzyme/protein consortia acting in muro. The texture of fleshy fruits is one of the major criteria for consumer choice. It impacts also post-harvest routes and transformation processes. Disassembly of fruit cell wall polysaccharides largely induces textural changes during ripening but the precise role of each polysaccharide and each enzyme remains unclear. The changes of cell wall polysaccharides during fruit ripening have mainly emphasized a modulation of the fine chemical structure of pectins by hydrolases, lyases, and esterases. This restructuring also involves a reorganization of hemicelluloses by hydrolases/transglycosydases and a modulation of their interactions with the cellulose by non-catalytic proteins such as expansin. Apple is the third fruit production in the world and is the subject of studies about fruit quality. This paper presents some of the results to date about the enzymes/proteins involved in this fruit ripening with a particular emphasis on apple.


1993 ◽  
Vol 44 (3) ◽  
pp. 405 ◽  
Author(s):  
G Annison

It has been well established over a number of years that the apparent metabolisable energy (AME) value of wheat is highly variable. In 1983 and 1987 in Australia two surveys indicated that approximately 25% of wheats have AME values lower than 13 MJ/kg.DM (range 10.4-15.9 MJ/kg.DM). Following recent studies it has been proposed that the soluble non-starch polysaccharide cell-wall components of wheat (mainly arabinoxylan with some G-glucan) have an anti-nitritive activity when wheats are present at high levels in broiler diets and are responsible for the low-AME wheat phenomenon. The main findings supporting this hypothesis are (1) wheat AME values are negatively correlated with soluble non-starch polysaccharide levels, (2) low level addition (30g/kg) of commercially available pur non-starch polysaccharides to broiler diets depresses the AME,of the diets, (3) degradation of the cell wall polysaccharides in situ by addition of glycanases to broiler diets raises AME values, and (4) addition of purified wheat arabinoxylan to broiler diets depresses the AME in a dose-dependant manner. The AME depression is a result of the inhibition of starch, lipid and proteindigestion in the fore-gut. This paper reviews the experiments and the data from the studies and discusses further aspects of the anti-nutritive activity of cereal polysaccharides in broiler diets. The possible role of the gut microflora in the growth depression observed when diets containing high levels of rye, barley and wheat are fed to broiler chickens is also examined.


2017 ◽  
Vol 123 (2) ◽  
pp. 211-218 ◽  
Author(s):  
Ashima Nayyar ◽  
Graeme Walker ◽  
Forbes Wardrop ◽  
Ashok K. Adya

2013 ◽  
Vol 289 (3) ◽  
pp. 1243-1256 ◽  
Author(s):  
Mark J. Lee ◽  
Fabrice N. Gravelat ◽  
Robert P. Cerone ◽  
Stefanie D. Baptista ◽  
Paolo V. Campoli ◽  
...  

The cell wall of Aspergillus fumigatus contains two galactose-containing polysaccharides, galactomannan and galactosaminogalactan, whose biosynthetic pathways are not well understood. The A. fumigatus genome contains three genes encoding putative UDP-glucose 4-epimerases, uge3, uge4, and uge5. We undertook this study to elucidate the function of these epimerases. We found that uge4 is minimally expressed and is not required for the synthesis of galactose-containing exopolysaccharides or galactose metabolism. Uge5 is the dominant UDP-glucose 4-epimerase in A. fumigatus and is essential for normal growth in galactose-based medium. Uge5 is required for synthesis of the galactofuranose (Galf) component of galactomannan and contributes galactose to the synthesis of galactosaminogalactan. Uge3 can mediate production of both UDP-galactose and UDP-N-acetylgalactosamine (GalNAc) and is required for the production of galactosaminogalactan but not galactomannan. In the absence of Uge5, Uge3 activity is sufficient for growth on galactose and the synthesis of galactosaminogalactan containing lower levels of galactose but not the synthesis of Galf. A double deletion of uge5 and uge3 blocked growth on galactose and synthesis of both Galf and galactosaminogalactan. This study is the first survey of glucose epimerases in A. fumigatus and contributes to our understanding of the role of these enzymes in metabolism and cell wall synthesis.


2011 ◽  
Vol 128 (1) ◽  
pp. 203-207 ◽  
Author(s):  
Xuewu Duan ◽  
Haiyan Zhang ◽  
Dandan Zhang ◽  
Jiangfeng Sheng ◽  
Hetong Lin ◽  
...  

1993 ◽  
Vol 44 (3) ◽  
pp. 405 ◽  
Author(s):  
G Annison

It has been well established over a number of years that the apparent metabolisable energy (AME) value of wheat is highly variable. In 1983 and 1987 in Australia two surveys indicated that approximately 25% of wheats have AME values lower than 13 MJ/kg.DM (range 10.4-15.9 MJ/kg.DM). Following recent studies it has been proposed that the soluble non-starch polysaccharide cell-wall components of wheat (mainly arabinoxylan with some G-glucan) have an anti-nitritive activity when wheats are present at high levels in broiler diets and are responsible for the low-AME wheat phenomenon. The main findings supporting this hypothesis are (1) wheat AME values are negatively correlated with soluble non-starch polysaccharide levels, (2) low level addition (30g/kg) of commercially available pur non-starch polysaccharides to broiler diets depresses the AME,of the diets, (3) degradation of the cell wall polysaccharides in situ by addition of glycanases to broiler diets raises AME values, and (4) addition of purified wheat arabinoxylan to broiler diets depresses the AME in a dose-dependant manner. The AME depression is a result of the inhibition of starch, lipid and proteindigestion in the fore-gut. This paper reviews the experiments and the data from the studies and discusses further aspects of the anti-nutritive activity of cereal polysaccharides in broiler diets. The possible role of the gut microflora in the growth depression observed when diets containing high levels of rye, barley and wheat are fed to broiler chickens is also examined.


1989 ◽  
Vol 20-21 (1) ◽  
pp. 45-61 ◽  
Author(s):  
K. Grohmann ◽  
D. J. Mitchell ◽  
M. E. Himmel ◽  
B. E. Dale ◽  
H. A. Schroeder

Sign in / Sign up

Export Citation Format

Share Document