scholarly journals Effects of El Niño drought on tree mortality and growth across forest types at different elevations in Borneo

2021 ◽  
Vol 490 ◽  
pp. 119096
Author(s):  
Kazuki Miyamoto ◽  
Shin-ichiro Aiba ◽  
Ryota Aoyagi ◽  
Reuben Nilus
Keyword(s):  
El Niño ◽  
El Nino ◽  
2002 ◽  
Vol 18 (2) ◽  
pp. 215-230 ◽  
Author(s):  
Shin-Ichiro Aiba ◽  
Kanehiro Kitayama

We examined the effects of the 1997–98 El Niño drought on nine rain forests of Mount Kinabalu, Borneo, at four altitudes (700, 1700, 2700 and 3100 m) on contrasting geological substrata (ultrabasic versus non-ultrabasic). Measurements of rainfall and atmospheric aridity indicated that the departure from normal conditions during the drought became greater with increasing altitude. During 1997–99 (drought period) compared to 1995–97 (pre-drought period), median growth rates of stem diameter of trees decreased for both smaller (4.8–10 cm) and larger (≥ 10 cm) diameter classes in the six upland forests (≥ 2700 m on ultrabasic substrata and ≥ 1700 m on non-ultrabasic substrata), but for neither diameter class in the other forests. The majority of species decreased or did not change growth rates during 1997–99, whereas some did increase. Tree mortality increased during 1997–99, at the larger diameter class in the two lowland forests (700 m) on both substrata, and at least at the smaller diameter class in the four upland forests (≥ 1700 m) on non-ultrabasic substrata. In two of these upland forests, mortality was restricted to particular understorey species. Mortality did not significantly increase in the three upland forests (≥ 1700 m) on ultrabasic substrata; this suggests that the adaptation to nutrient-poor soils might have provided the resistance to drought.


2004 ◽  
Vol 359 (1443) ◽  
pp. 367-380 ◽  
Author(s):  
Jos Barlow ◽  
Carlos A. Peres

Over the past 20 years the combined effects of El Niño–induced droughts and land–use change have dramatically increased the frequency of fire in humid tropical forests. Despite the potential for rapid ecosystem alteration and the current prevalence of wildfire disturbance, the consequences of such fires for tropical forest biodiversity remain poorly understood. We provide a pan–tropical review of the current state of knowledge of these fires, and include data from a study in a seasonally dry terra firme forest of central Brazilian Amazonia. Overall, this study supports predictions that rates of tree mortality and changes in forest structure are strongly linked to burn severity. The potential consequences for biomass loss and carbon emissions are explored. Despite the paucity of data on faunal responses to tropical forest fires, some trends are becoming apparent; for example, large canopy frugivores and understorey insectivorous birds appear to be highly sensitive to changes in forest structure and composition during the first 3 years after fires. Finally, we appraise the management implications of fires and evaluate the viability of techniques and legislation that can be used to reduce forest flammability, prevent anthropogenic ignition sources from coming into contact with flammable forests and aid the post–fire recovery process.


2021 ◽  
Vol 118 (21) ◽  
pp. e2003169118
Author(s):  
Amy C. Bennett ◽  
Greta C. Dargie ◽  
Aida Cuni-Sanchez ◽  
John Tshibamba Mukendi ◽  
Wannes Hubau ◽  
...  

The responses of tropical forests to environmental change are critical uncertainties in predicting the future impacts of climate change. The positive phase of the 2015–2016 El Niño Southern Oscillation resulted in unprecedented heat and low precipitation in the tropics with substantial impacts on the global carbon cycle. The role of African tropical forests is uncertain as their responses to short-term drought and temperature anomalies have yet to be determined using on-the-ground measurements. African tropical forests may be particularly sensitive because they exist in relatively dry conditions compared with Amazonian or Asian forests, or they may be more resistant because of an abundance of drought-adapted species. Here, we report responses of structurally intact old-growth lowland tropical forests inventoried within the African Tropical Rainforest Observatory Network (AfriTRON). We use 100 long-term inventory plots from six countries each measured at least twice prior to and once following the 2015–2016 El Niño event. These plots experienced the highest temperatures and driest conditions on record. The record temperature did not significantly reduce carbon gains from tree growth or significantly increase carbon losses from tree mortality, but the record drought did significantly decrease net carbon uptake. Overall, the long-term biomass increase of these forests was reduced due to the El Niño event, but these plots remained a live biomass carbon sink (0.51 ± 0.40 Mg C ha−1 y−1) despite extreme environmental conditions. Our analyses, while limited to African tropical forests, suggest they may be more resistant to climatic extremes than Amazonian and Asian forests.


2000 ◽  
Vol 14 (5) ◽  
pp. 1538-1542 ◽  
Author(s):  
G. Bruce Williamson ◽  
William F. Laurance ◽  
Alexandre A. Oliveira ◽  
Patricia Delamonica ◽  
Claude Gascon ◽  
...  
Keyword(s):  
El Niño ◽  

Biotropica ◽  
2012 ◽  
Vol 44 (5) ◽  
pp. 606-617 ◽  
Author(s):  
Akira Itoh ◽  
Satoshi Nanami ◽  
Tsuyoshi Harata ◽  
Tatsuhiro Ohkubo ◽  
Sylvester Tan ◽  
...  

Forests ◽  
2019 ◽  
Vol 10 (11) ◽  
pp. 967
Author(s):  
Rungnapa Kaewthongrach ◽  
Yann Vitasse ◽  
Taninnuch Lamjiak ◽  
Amnat Chidthaisong

Secondary forest areas are increasing worldwide and understanding how these forests interact with climate change including frequent and extreme events becomes increasingly important. This study aims to investigate the effects of the strong 2015/2016 El Niño-induced drought on species-specific leaf phenology, dieback and tree mortality in a secondary dry dipterocarp forest (DDF) in western Thailand. During the 2015/2016 El Niño event, rainfall and soil water content were lower than 25 mm and 5% during 5–6 consecutive months. The dry season was 3–4 months longer during the El Niño than during non-El Niño events. We found that this prolonged drought induced the earlier shedding and a delay in leaf emergence of the DDF. The deciduousness period was also longer during the El Niño event (5 months instead of 2–3 months during non-El Niño event). We found that the DDF species showed different phenological responses and sensitivities to the El Niño-induced drought. The leaf phenology of stem succulent species Lannea coromandelica (Houtt.) Merr. and a complete deciduous species with low wood density. Sindora siamensis Teijsm. ex Miq. was only slightly affected by the El Niño-induced drought. Conversely, a semi-deciduous species such as Dipterocarpus obtusifolius Teijsm. ex Miq. showed a higher degree of deciduousness during the El Niño compared to non-El Niño events. Our results also highlight that dieback and mortality during El Niño were increased by 45 and 50%, respectively, compared to non-El Niño events, pointing at the importance of such events to shape DDF ecosystems.


2018 ◽  
Vol 373 (1760) ◽  
pp. 20170311 ◽  
Author(s):  
Patrick Meir ◽  
Maurizio Mencuccini ◽  
Oliver Binks ◽  
Antonio Lola da Costa ◽  
Leandro Ferreira ◽  
...  

Are short-term responses by tropical rainforest to drought (e.g. during El Niño) sufficient to predict changes over the long-term, or from repeated drought? Using the world's only long-term (16-year) drought experiment in tropical forest we examine predictability from short-term measurements (1–2 years). Transpiration was maximized in droughted forest: it consumed all available throughfall throughout the 16 years of study. Leaf photosynthetic capacity was maintained, but only when averaged across tree size groups. Annual transpiration in droughted forest was less than in control, with initial reductions (at high biomass) imposed by foliar stomatal control. Tree mortality increased after year three, leading to an overall biomass loss of 40%; over the long-term, the main constraint on transpiration was thus imposed by the associated reduction in sapwood area. Altered tree mortality risk may prove predictable from soil and plant hydraulics, but additional monitoring is needed to test whether future biomass will stabilize or collapse. Allocation of assimilate differed over time: stem growth and reproductive output declined in the short-term, but following mortality-related changes in resource availability, both showed long-term resilience, with partial or full recovery. Understanding and simulation of these phenomena and related trade-offs in allocation will advance more effectively through greater use of optimization and probabilistic modelling approaches. This article is part of a discussion meeting issue ‘The impact of the 2015/2016 El Niño on the terrestrial tropical carbon cycle: patterns, mechanisms and implications’.


2020 ◽  
Vol 55 (4) ◽  
pp. 1-14
Author(s):  
K. Legal ◽  
P. Plantin
Keyword(s):  
El Niño ◽  

2020 ◽  
Vol 54 (3) ◽  
pp. 1-15
Author(s):  
K. Legal ◽  
P. Plantin
Keyword(s):  
El Niño ◽  

Author(s):  
C. Thévenin-Lemoine ◽  
F. Accadbled ◽  
J. Sales de Gauzy
Keyword(s):  
El Niño ◽  

Sign in / Sign up

Export Citation Format

Share Document