Drone-acquired data reveal the importance of forest canopy structure in predicting tree diversity

2022 ◽  
Vol 505 ◽  
pp. 119945
Author(s):  
Jian Zhang ◽  
Zhaochen Zhang ◽  
James A. Lutz ◽  
Chengjin Chu ◽  
Jianbo Hu ◽  
...  
Author(s):  
Brady S. Hardiman ◽  
Elizabeth A. LaRue ◽  
Jeff W. Atkins ◽  
Robert T. Fahey ◽  
Franklin W. Wagner ◽  
...  

Forest canopy structure (CS) controls many ecosystem functions and is highly variable across landscapes, but the magnitude and scale of this variation is not well understood. We used a portable canopy lidar system to characterize variation in five categories of CS along N = 3 transects (140–800 m long) at each of six forested landscapes within the eastern USA. The cumulative coefficient of variation was calculated for subsegments of each transect to determine the point of stability for individual CS metrics. We then quantified the scale at which CS is autocorrelated using Moran’s I in an Incremental Autocorrelation analysis. All CS metrics reached stable values within 300 m but varied substantially within and among forested landscapes. A stable point of 300 m for CS metrics corresponds with the spatial extent that many ecosystem functions are measured and modeled. Additionally, CS metrics were spatially autocorrelated at 40 to 88 m, suggesting that patch scale disturbance or environmental factors drive these patterns. Our study shows CS is heterogeneous across temperate forest landscapes at the scale of 10’s of meters, requiring a resolution of this size for upscaling CS with remote sensing to large spatial scales.


2017 ◽  
Vol 26 (11) ◽  
pp. 963 ◽  
Author(s):  
Michael J. Lacki ◽  
Luke E. Dodd ◽  
Nicholas S. Skowronski ◽  
Matthew B. Dickinson ◽  
Lynne K. Rieske

The extent to which prescribed fires affect forest structure and habitats of vertebrate species is an important question for land managers tasked with balancing potentially conflicting objectives of vegetation and wildlife management. Many insectivorous bats forage for insect prey in forested habitats, serving as the primary predators of nocturnal forest insects, and are potentially affected by structural changes in forests resulting from prescribed fires. We compared forest-stand characteristics of temperate oak–hickory forests, as measured with airborne laser scanning (light detection and ranging, LiDAR), with categorical estimates of burn severity from prescribed fires as derived from Landsat data and field-based Composite Burn Indices, and used acoustic monitoring to quantify activity of insectivorous bats in association with varying degrees of burn severity (unburned habitat, low severity and medium severity). Forest-stand characteristics showed greatest separation between low-severity and medium-severity classes, with gap index, i.e. open-air space, increasing with degree of burn severity. Greater mid-storey density, over-storey density and proportion of vegetation in the understorey occurred in unburned habitat. Activity of bats did not differ with burn severity for high-frequency (clutter-adapted or closed-space foragers) or low-frequency (edge or open-space foragers) bats. Results indicate that differing degrees of burn severity from prescribed fires produced spatial variation in canopy structure within stands; however, bats demonstrated no shifts in activity levels to this variation in canopy structure, suggesting prescribed fire during the dormant season, used as a management practice targeting desired changes in vegetation, is compatible with sustaining foraging habitat of insectivorous bats.


2015 ◽  
Vol 41 (1) ◽  
pp. 169-174 ◽  
Author(s):  
Akira KATO ◽  
Yuma OKITSU ◽  
Nobumitsu TSUNEMATSU ◽  
Tsuyoshi HONJYO ◽  
Tatsuaki KOBAYASHI ◽  
...  

2003 ◽  
Vol 29 (3) ◽  
pp. 388-410 ◽  
Author(s):  
Jean-Michel N Walter ◽  
Richard A Fournier ◽  
Kamel Soudani ◽  
Emmanuel Meyer

1995 ◽  
Vol 10 (1) ◽  
pp. 13-18 ◽  
Author(s):  
Tohru Nakashizuka ◽  
Toshio Katsuki ◽  
Hiroshi Tanaka

2017 ◽  
Vol 114 (31) ◽  
pp. 8307-8312 ◽  
Author(s):  
Andrew B. Davies ◽  
Marc Ancrenaz ◽  
Felicity Oram ◽  
Gregory P. Asner

The conservation of charismatic and functionally important large species is becoming increasingly difficult. Anthropogenic pressures continue to squeeze available habitat and force animals into degraded and disturbed areas. Ensuring the long-term survival of these species requires a well-developed understanding of how animals use these new landscapes to inform conservation and habitat restoration efforts. We combined 3 y of highly detailed visual observations of Bornean orangutans with high-resolution airborne remote sensing (Light Detection and Ranging) to understand orangutan movement in disturbed and fragmented forests of Malaysian Borneo. Structural attributes of the upper forest canopy were the dominant determinant of orangutan movement among all age and sex classes, with orangutans more likely to move in directions of increased canopy closure, tall trees, and uniform height, as well as avoiding canopy gaps and moving toward emergent crowns. In contrast, canopy vertical complexity (canopy layering and shape) did not affect movement. Our results suggest that although orangutans do make use of disturbed forest, they select certain canopy attributes within these forests, indicating that not all disturbed or degraded forest is of equal value for the long-term sustainability of orangutan populations. Although the value of disturbed habitats needs to be recognized in conservation plans for wide-ranging, large-bodied species, minimal ecological requirements within these habitats also need to be understood and considered if long-term population viability is to be realized.


Sign in / Sign up

Export Citation Format

Share Document