canopy structure
Recently Published Documents


TOTAL DOCUMENTS

959
(FIVE YEARS 244)

H-INDEX

66
(FIVE YEARS 9)

2022 ◽  
Vol 505 ◽  
pp. 119945
Author(s):  
Jian Zhang ◽  
Zhaochen Zhang ◽  
James A. Lutz ◽  
Chengjin Chu ◽  
Jianbo Hu ◽  
...  

Oryx ◽  
2021 ◽  
pp. 1-9
Author(s):  
Sayam U. Chowdhury ◽  
Mohammod Foysal ◽  
Nazim Uddin Khan

Abstract Pallas's fish eagle Haliaeetus leucoryphus was recategorized from Vulnerable to Endangered on the IUCN Red List in 2017 because of evidence that there is only a single population, which is declining as a result of continuous, widespread loss and degradation of freshwater wetlands. To determine the species’ status in Bangladesh, we conducted a large-scale community-based interview survey in north-east Bangladesh in 2017–2020. We also examined nest site habitat characteristics through field surveys and remotely sensed data. We conducted a total of 955 interviews in an area of 4,150 km2, through which we were able to determine the presence of 53 breeding pairs at a mean density of 1.2 nests per 100 km2. There was a higher nest density (3.7–4.8 nests per 100 km2) in some locations, which we identify as priority conservation areas. The majority of nests (62.2%) were close together and on tall trees with an open canopy structure. Nests were located within or close to (< 100 m) human settlements, and within 500 m of wetlands and rivers. Felling of nest trees, removal of nests by local people and loss of permanent wetlands (14.6% during 2010–2020) appeared to be the main threats. High nesting density in our study area suggests that the freshwater wetlands in north-east Bangladesh possibly hold the largest population of Pallas's fish eagle globally.


2021 ◽  
Vol 4 ◽  
Author(s):  
Theresia Yazbeck ◽  
Gil Bohrer ◽  
Pierre Gentine ◽  
Luping Ye ◽  
Nicola Arriga ◽  
...  

Solar-Induced Chlorophyll Fluorescence (SIF) can provide key information about the state of photosynthesis and offers the prospect of defining remote sensing-based estimation of Gross Primary Production (GPP). There is strong theoretical support for the link between SIF and GPP and this relationship has been empirically demonstrated using ground-based, airborne, and satellite-based SIF observations, as well as modeling. However, most evaluations have been based on monthly and annual scales, yet the GPP:SIF relations can be strongly influenced by both vegetation structure and physiology. At the monthly timescales, the structural response often dominates but short-term physiological variations can strongly impact the GPP:SIF relations. Here, we test how well SIF can predict the inter-daily variation of GPP during the growing season and under stress conditions, while taking into account the local effect of sites and abiotic conditions. We compare the accuracy of GPP predictions from SIF at different timescales (half-hourly, daily, and weekly), while evaluating effect of adding environmental variables to the relationship. We utilize observations for years 2018–2019 at 31 mid-latitudes, forested, eddy covariance (EC) flux sites in North America and Europe and use TROPOMI satellite data for SIF. Our results show that SIF is a good predictor of GPP, when accounting for inter-site variation, probably due to differences in canopy structure. Seasonally averaged leaf area index, fraction of absorbed photosynthetically active radiation (fPAR) and canopy conductance provide a predictor to the site-level effect. We show that fPAR is the main factor driving errors in the linear model at high temporal resolution. Adding water stress indicators, namely canopy conductance, to a multi-linear SIF-based GPP model provides the best improvement in the model precision at the three considered timescales, showing the importance of accounting for water stress in GPP predictions, independent of the SIF signal. SIF is a promising predictor for GPP among other remote sensing variables, but more focus should be placed on including canopy structure, and water stress effects in the relationship, especially when considering intra-seasonal, and inter- and intra-daily resolutions.


2021 ◽  
Vol 13 (23) ◽  
pp. 4911
Author(s):  
Xiaoning Zhang ◽  
Ziti Jiao ◽  
Changsen Zhao ◽  
Siyang Yin ◽  
Lei Cui ◽  
...  

Canopy structure parameters (e.g., leaf area index (LAI)) are key variables of most climate and ecology models. Currently, satellite-observed reflectances at a few viewing angles are often directly used for vegetation structure parameter retrieval; therefore, the information content of multi-angular observations that are sensitive to canopy structure in theory cannot be sufficiently considered. In this study, we proposed a novel method to retrieve LAI based on modelled multi-angular reflectances at sufficient sun-viewing geometries, by linking the PROSAIL model with a kernel-driven Ross-Li bi-directional reflectance function (BRDF) model using the MODIS BRDF parameter product. First, BRDF sensitivity to the PROSAIL input parameters was investigated to reduce the insensitive parameters. Then, MODIS BRDF parameters were used to model sufficient multi-angular reflectances. By comparing these reference MODIS reflectances with simulated PROSAIL reflectances within the range of the sensitive input parameters in the same geometries, the optimal vegetation parameters were determined by searching the minimum discrepancies between them. In addition, a significantly linear relationship between the average leaf angle (ALA) and the coefficient of the volumetric scattering kernel of the Ross-Li model in the near-infrared band was built, which can narrow the search scope of the ALA and accelerate the retrieval. In the validation, the proposed method attains a higher consistency (root mean square error (RMSE) = 1.13, bias = −0.19, and relative RMSE (RRMSE) = 36.8%) with field-measured LAIs and 30-m LAI maps for crops than that obtained with the MODIS LAI product. The results indicate the vegetation inversion potential of sufficient multi-angular data and the ALA relationship, and this method presents promise for large-scale LAI estimation.


2021 ◽  
Vol 18 (22) ◽  
pp. 6077-6091
Author(s):  
Trina Merrick ◽  
Stephanie Pau ◽  
Matteo Detto ◽  
Eben N. Broadbent ◽  
Stephanie A. Bohlman ◽  
...  

Abstract. Recently, remotely sensed measurements of the near-infrared reflectance (NIRv) of vegetation, the fluorescence correction vegetation index (FCVI), and radiance (NIRvrad) of vegetation have emerged as indicators of vegetation structure and function with potential to enhance or improve upon commonly used indicators, such as the normalized difference vegetation index (NDVI) and the enhanced vegetation index (EVI). The applicability of these remotely sensed indices to tropical forests, key ecosystems for global carbon cycling and biodiversity, has been limited. In particular, fine-scale spatial and temporal heterogeneity of structure and physiology may contribute to variation in these indices and the properties that are presumed to be tracked by them, such as gross primary productivity (GPP) and absorbed photosynthetically active radiation (APAR). In this study, fine-scale (approx. 15 cm) tropical forest heterogeneity represented by NIRv, FCVI, and NIRvrad and by lidar-derived height is investigated and compared to NIRv and EVI using unoccupied aerial system (UAS)-based hyperspectral and lidar sensors. By exploiting near-infrared signals, NIRv, FCVI, and NIRvrad captured the greatest spatiotemporal variability, followed by the enhanced vegetation index (EVI) and then the normalized difference vegetation index (NDVI). Wavelet analyses showed the dominant spatial scale of variability of all indicators was driven by tree clusters and larger-than-tree-crown size gaps rather than individual tree crowns. NIRv, FCVI, NIRvrad, and EVI captured variability at smaller spatial scales (∼ 50 m) than NDVI (∼ 90 m) and the lidar-based surface model (∼ 70 m). We show that spatial and temporal patterns of NIRv and FCVI were virtually identical for a dense green canopy, confirming predictions in earlier studies. Furthermore, we show that NIRvrad, which does not require separate irradiance measurements, correlated more strongly with GPP and PAR than did other indicators. NIRv, FCVI, and NIRvrad, which are related to canopy structure and the radiation regime of vegetation canopies, are promising tools to improve understanding of tropical forest canopy structure and function.


Sign in / Sign up

Export Citation Format

Share Document