Protein Disulfide Isomerase (PDI) Regulation of NADPH Oxidase Activity: Effects on Angiotensin II Redox Signaling in Hypertension

2010 ◽  
Vol 49 ◽  
pp. S16
Author(s):  
Livia de Lucca Camargo ◽  
Aline Cristianne Depoli Androwiki ◽  
Graziela Scalianti Ceravolo ◽  
Alexandre Denadai-Souza ◽  
Marcelo Nicolas Muscara ◽  
...  
Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
Denise C Fernandes ◽  
Celio X Santos ◽  
Hanjoong Jo ◽  
Francisco R Laurindo

While anti-atherogenic effects of sustained laminar shear (LS) involve NO release from eNOS, increases in LS trigger transient superoxide production via NADPH oxidase. Recently, we showed that NADPH oxidase undergoes thiol-dependent regulation by the thioredoxin superfamily chaperone Protein Disulfide Isomerase (PDI). PDI is known to promote NO internalization via trans-nitrosation reactions. We hypothesized that PDI-dependent support of NADPH oxidase activity affects NO output during sustained LS. Cultured rabbit aortic endothelial cells (RAEC) submitted to LS (15 dynes/cm 2 ) in a cone-plate system for 18h exhibited (vs. static controls): Decreased (~50%) superoxide production (HPLC analysis of DHE oxidation); Decreased (~20%) NADPH-triggered hydrogen peroxide production in membrane fraction (Amplex Red assay); Decreased mRNA expression of Nox1 (67%) and Nox4 (45%) (real-time QPCR); Increased eNOS expression (~50%, western blot) and nitrite levels in culture medium (Δ = 7.1±2.5[SD] μM, NO Analyzer and Griess reaction); Decrease in total and membrane fraction PDI protein expression (~20%) without changes in membrane fraction/total ratio of PDI. RAEC were transfected with c-myc -tagged plasmid coding for wild-type (WT) PDI or PDI mutated in 4 thioredoxin-motif cysteine residues. Forced expression (2-fold) of mutated but not WT PDI led to increase in nitrite output after LS (18h) (Δmutated = 17.2±3.3 μM vs. ΔWT = 7.0±1.9 μM, n=3, p<0.02). Confocal microscopy indicated similar subcellular localization between WT and mutated PDI. PDI co-imunoprecipitated with p22phox NADPH oxidase subunit, but not with eNOS or caveolin-1, either in static condition or after LS. Fractionation studies in sucrose gradients showed that PDI is distributed throughout several fractions in static conditions, including caveolin-1-enriched fractions, but migrates to higher-density fractions, not containing caveolin-1, during sustained LS. These results suggest that PDI is involved in regulation of NO output during LS via its effects on NADPH oxidase activity.


2008 ◽  
Vol 10 (6) ◽  
pp. 1101-1114 ◽  
Author(s):  
Francisco R.M. Laurindo ◽  
Denise C. Fernandes ◽  
Angélica M. Amanso ◽  
Lucia R. Lopes ◽  
Célio X.C. Santos

2006 ◽  
Vol 45 (3) ◽  
pp. e71
Author(s):  
Mariano Janiszewski ◽  
Katrin Schröder ◽  
Rudi Busse ◽  
Francisco Laurindo ◽  
Ralf P. Brandes

2006 ◽  
Vol 20 (4) ◽  
Author(s):  
Ralf P. Brandes ◽  
Rudi Busse ◽  
Francisco R Laurindo ◽  
Mariano Janiszewski

2012 ◽  
Vol 53 ◽  
pp. S156-S157
Author(s):  
Livia de Lucca Camargo ◽  
Aline Cristianne Depoli Androwiki ◽  
Graziela Scalianti Ceravolo ◽  
Andreia Zago Chignalia ◽  
Alexandre Denadai-Souza ◽  
...  

2009 ◽  
Vol 86 (4) ◽  
pp. 989-998 ◽  
Author(s):  
Célio X. C. Santos ◽  
Beatriz S. Stolf ◽  
Paulo V. A. Takemoto ◽  
Angélica M. Amanso ◽  
Lucia R. Lopes ◽  
...  

Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
Dongmei Liu ◽  
Lie Gao ◽  
Kurtis G Cornish ◽  
Irving H Zucker

In a previous study, we showed that Ang II type I receptor (AT1R) expression increased in the rostral ventrolateral medulla (RVLM) of chronic heart failure (CHF) rabbits and in normal rabbits infused with intracerebroventricular (ICV) Angiotensin II (AngII). The present study investigated if oxidative stress plays a role in Ang II induced AT1R upregulation and its relationship to the transcription factor activator protein 1 (AP1) in CHF rabbits and in the CATHa neuronal cell line. In neuronal cell cultures, Ang II significantly increased AT1R mRNA by 153 ± 22%, P <0.01; c-Jun mRNA by 90 ± 10%, P < 0.01; NADPH oxidase activity by 126 ± 43%, P < 0.01 versus untreated cells; Tempol, Apocynin and the AP 1 inhibitor Tanshinone II reversed the increased AT1R, c-Jun expression and NADPH oxidase activity induced by AngII. We examined the effect of ICV Tempol on expression of these proteins in the RVLM of CHF rabbits. Compared to untreated CHF rabbits Tempol significantly decreased AT1R protein expression (0.88±0.16 vs. 1.6±0.29, P <0.05), phosphorylated Jnk protein (0.10±0.02 vs. 0.31±0.10, P <0.05), and phosphorylated c-Jun (0.02±0.001 vs. 0.14±0.05, P <0.05). These data suggest that Ang II induces AT1R upregulation at the transcriptional level by activation of oxidative stress and AP1 in both cultured cells and in intact brain. Antioxidant agents may be beneficial in CHF by decreasing AT1R expression through the Jnk and AP1 pathway.


Sign in / Sign up

Export Citation Format

Share Document