laminar shear
Recently Published Documents


TOTAL DOCUMENTS

347
(FIVE YEARS 56)

H-INDEX

46
(FIVE YEARS 4)

Author(s):  
Weidan Shi ◽  
Weien Chen ◽  
Youqin Lin ◽  
Yingxiong Wu

2021 ◽  
Author(s):  
John M. Owen ◽  
Kenneth J. Dormer

Many diseases have oxidative stress and inflammation as underlying pathological features, including metabolic and inflammatory/autoimmune disorders, diseases of the lung, liver, kidney, gastrointestinal tract, cardiovascular and nervous systems. A leading physiological mechanism for oxidative stress is the nuclear erythroid-related factor 2-like 2/antioxidant response element (Nrf2/ARE) signaling pathway. It maintains intracellular homeostasis and protects cells from oxidative damage by inducing phase II detoxifying and oxidative-stress responsive genes. Nrf2 transcription factor functions as the key controller of the redox homeostatic gene regulatory network, and is tightly controlled by the repressor protein, Kelch-like ECH-associated protein 1 (Keap1). Pharmacological agents to inhibit Keap1 and boost effectiveness of the Nrf2/ARE pathway have been developed and more are in development. This chapter elucidates the importance of hemodynamic laminar shear stress in oxidative homeostasis and examines hemodynamic induction of the shear stress (SS)/Krupple-like factor2 (KLF2) /Nrf2/ARE pathway as a means to combat oxidative stress through hemodynamics.


2021 ◽  
Author(s):  
Arndt F Siekmann ◽  
Roman Tsaryk ◽  
Nora Yucel ◽  
Zoltan Arany ◽  
Olga Bondareva ◽  
...  

Endothelial cells (EC) lining blood vessels are exposed to mechanical forces, such as shear stress exerted by the flowing blood. These forces control many aspects of EC biology, including vascular tone, cell migration and proliferation in addition to cell size and shape. Despite a good understanding of the genes and signaling pathways responding to shear stress, our insights into the transcriptional regulation of these responses is much more limited. In particular, we do not know the different sets of regulatory elements (enhancers) that might control increases or decreases in gene expression. Here, we set out to study changes in the chromatin landscape of human umbilical vein endothelial cells (HUVEC) exposed to laminar shear stress. To do so, we performed ChIP-Seq for H3K27 acetylation, indicative of active enhancer elements and ATAC-Seq to mark regions of open chromatin in addition to RNA-Seq on HUVEC exposed to 6 hours of laminar shear stress. Our results show a correlation of gained and lost enhancers with up- and downregulated genes, respectively. DNA motif analysis revealed an over-representation of KLF transcription factor (TF) binding sites in gained enhancers, while lost enhancers contained more ETV/ETS motifs. We validated a subset of flow responsive enhancers using luciferase-based reporter constructs and CRISPR-Cas9 mediated genome editing. Lastly, we characterized shear stress responsive genes in ECs of zebrafish embryos using RNA-Seq. Together, our results reveal the presence of shear stress responsive DNA regulatory elements and lay the groundwork for the future exploration of these elements and the TFs binding to them in controlling EC biology.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Jianbo Dai ◽  
Li Wang ◽  
Chengtao Hu ◽  
Guidi Zhang

The seismic response of buried oil and gas pipelines is mainly influenced by the site soil. In this paper, a bidirectional laminar shear continuum model box is developed for the site response of buried oil and gas pipelines under transverse multipoint seismic excitation. By comparing the acceleration response of the soil and pipeline, monitoring the soil displacement, and analyzing the acceleration coefficient and Fourier spectrum, the seismic response characteristics of the soil at different excitation modes and peak seismic acceleration and its laws were investigated. The test results show that the soil under transverse excitation undergoes the process of soil compaction to nonlinear characteristics and finally soil damage, and the course of multipoint excitation develops faster and causes more serious soil damage. The peak Fourier spectrum of both the pipe and the soil appears at the frequency of 4–6 Hz, and in general, the acceleration of the pipe is greater than that of the soil; the difference between the two gradually decreases with the increase of loading level. Compared with the uniform excitation, the increase in the loading level during the lateral multipoint excitation will result in a decrease of the consistency of the acceleration time history curve at each measurement point and a decrease of the peak of the spectrum. The effect of laminar shear between soil bodies becomes more obvious with the increase of acceleration peaks on the shaking table. It is also found out that the excitation method has little effect on the displacement time history curve, but the multipoint excitation may cause fluctuations in the displacement time history curve.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Jianbo Dai ◽  
Chengtao Hu ◽  
Li Wang ◽  
Guidi Zhang

This paper studies the seismic response of buried oil and gas pipelines under the bidirectional nonuniform excitation. Based on the bidirectional shaking table array test, the loading and testing scheme is designed and developed, analyzing the strain response of the buried oil and gas pipeline under the bidirectional uniform and nonuniform seismic excitation, as well as the acceleration response and displacement response characteristics of the pipeline and the surrounding soil body and their change rule by the test. The test proves to show that the developed bidirectional laminar shear continuum model soil box can meet the requirements of the bidirectional nonuniform seismic excitation and continuous laminar shear deformation of the soil. The peak strains of the pipeline in axial and bending caused by nonuniform excitation are larger than those of the pipeline under uniform excitation, the degree of unevenness in the distribution along the axial direction is greater, and the strain curves are large in the middle and small at both ends along the axial direction of the pipe. The acceleration responses of the pipeline and the soil body under the bidirectional nonuniform excitation are larger than those under the uniform excitation. The acceleration response of both the pipe and the soil under the nonuniform excitation is larger than that under the uniform excitation, and the differences are shown in the transverse and axial directions, the peak acceleration response of the soil body under the nonuniform excitation is about three times that of the transverse direction, and more peak points appear in the axial and transverse acceleration responses of the pipe under the nonuniform excitation as the loading level increases, the peak displacement response of the soil body increases gradually with the height, but the fluctuation range of the peak displacement of the soil body nearby the pipe is larger. The soil displacement curve starts to smooth out when the loading level reaches 1.0 g, and the axial displacement decreases, which indicates that the interaction between the pipe and soil is more intense and the relative motion between the pipe and soil is more obvious under the nonuniform excitation, and the soil is more likely to be damaged and enter the nonlinear stage. Therefore, it is necessary to analyze and design the seismic performance of buried pipes considering the nonuniform seismic excitation.


2021 ◽  
Vol 30 (2) ◽  
pp. 213-220
Author(s):  
Ji-Seok Kim ◽  
Jacqueline Sayoc ◽  
Kyung-Wan Baek ◽  
Joon-Young Park

PURPOSE:Accumulation of senescent endothelial cells (ECs) and development of vascular aging have been implicated in the etiology of vascular dysfunction and disease. Aerobic exercise has been recognized as the single most effective non-pharmacological anti-aging intervention via increased laminar shear stress (LSS). This study aimed to determine the protective effects of LSS against premature senescence and the underlying mechanism.METHODS: Carotid artery partial ligation surgery was performed on the left carotid arteries (LCAs) of C57BL/6J male mice to determine the effect of disturbed flow on the development of endothelial senescence. Senescence-associated β-galactosidase (SA-β-gal) staining was performed to measure cellular senescence. Expression levels of protein markers for cell senescence including p21, p16, and p53 were measured by western blotting.RESULTS: <i>En face</i> SA-β-gal staining was identified only in the partially ligated LCAs of voluntary wheel-running mice, suggesting a direct relevance of LSS on the prevention of vascular senescence. In the <i>in vitro</i> H<sub>2</sub>O<sub>2</sub>-induced premature senescence model, preconditioning of high-flow LSS (20 dyne/cm<sup>2</sup>, 36 hours) induced significant reduction in the percentage of SA-β-gal positive ECs. Expression of the molecular markers of cellular senescence such as p21, p16, and p53 was significantly decreased by LSS pretreatment. However, the protective effects of LSS against premature senescence were completely abolished by SIRT1 inhibition.CONCLUSIONS: The results suggest that high-flow LSS has protective effects against oxidative stress-induced premature endothelial senescence through a SIRT1-dependent mechanism.


Sign in / Sign up

Export Citation Format

Share Document