vascular smooth muscle
Recently Published Documents


TOTAL DOCUMENTS

14580
(FIVE YEARS 1440)

H-INDEX

196
(FIVE YEARS 17)

2022 ◽  
Vol 11 (2) ◽  
pp. 373
Author(s):  
Krzysztof Kosiński ◽  
Damian Malinowski ◽  
Krzysztof Safranow ◽  
Violetta Dziedziejko ◽  
Andrzej Pawlik

Coronary artery disease (CAD) is a syndrome resulting from myocardial ischaemia of heterogeneous pathomechanism. Environmental and genetic factors contribute to its development. Atherosclerotic plaques that significantly narrow the lumen of coronary arteries cause symptoms of myocardial ischaemia. Acute coronary incidents are most often associated with plaque rupture or erosion accompanied by local activation of the coagulation system with thrombus formation. Plaque formation and stability are influenced by endothelial function and vascular smooth muscle cell function. In this study, we investigated the association between polymorphisms in genes affecting endothelial and vascular smooth muscle cell (VSMC) function and the occurrence of unstable angina pectoris. The aim of this study was to evaluate the association between the PECAM1 (rs1867624), COL4A2 (rs4773144), PHACTR1 (rs9349379) and LMOD1 (rs2820315) gene polymorphisms and the risk of unstable angina. The study included 232 patients with unstable angina diagnosed on the basis of clinical symptoms and coronary angiography and 144 healthy subjects with no significant coronary lumen stenosis at coronary angiography. There were no statistically significant differences in the distribution of COL4A2 rs4773144 and PECAM1 rs1867624 gene polymorphisms between patients with unstable angina and control subjects. In patients with unstable angina, there was an increased frequency of PHACTR1 rs9349379 G allele carriers (GG and AG genotypes) (GG+AG vs. AA, OR 1.71; 95% CI 1.10–2.66, p = 0.017) and carriers of the LMOD1 rs2820315 T allele (TT and CT genotypes) (TT+CT vs. CC, OR 1.65; 95% CI 1.09–2.51, p = 0.019) compared to the control group. The association between these alleles and unstable angina was confirmed by multivariate logistic regression analysis, in which the number of G (PHACTR1 rs9349379) and T (LMOD1 rs2820315) alleles was an independent risk factor for unstable angina. The results suggest an association between PHACTR1 rs9349379 and LMOD1 rs2820315 polymorphisms and the risk of unstable angina.


2022 ◽  
Vol 12 ◽  
Author(s):  
Hanxue Sun ◽  
Xizhong Du ◽  
Tao Zeng ◽  
Shenggang Ruan ◽  
Guoqin Li ◽  
...  

This experiment was conducted to investigate the effects of compound probiotics on intestinal microflora and metabolome of Shaoxing ducks. A total of 640 1-day-old Shaoxing ducks were randomly divided into two treatments with eight replicates and forty ducks for each replicate. The ducks were fed basal diet (Ctrl) and basal diet supplemented with 0.15% compound probiotics (MixP). The experiment lasted for 85 days. The results showed that the abundance of Bacteroidetes and Bacteroides in MixP was higher than that in Ctrl (P < 0.05). However, the abundance of Firmicutes and Oscillospira and Desulfovibrio in MixP was lower than that in Ctrl (P < 0.05). Concentrations of 71 metabolites differed significantly (P < 0.05) between the MixP and the Ctrl groups; for example, Pyridoxal (Vitamin B6), L-Arginine, and Betaine aldehyde were up-regulated (P < 0.05), and 7-oxocholesterol, 3-hydroxy-L-kynureni-ne, and N-acetyl-d-glucosamine were down-regulated (P < 0.05). KEGG was enriched in 15 metabolic pathways. The pathways of Vitamin B6 metabolism, Vascular smooth muscle contraction, Vitamin digestion and absorption, and Protein digestion and absorption were influenced by compound probiotics supplementation. Thus, supplementation of compound probiotics improved cecal heath through shifts in the cecal microbiome and metabolome.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Chen Wang ◽  
Haoyu Wu ◽  
Yuanming Xing ◽  
Yulan Ye ◽  
Fangzhou He ◽  
...  

AbstractEndothelial dysfunction and vascular smooth muscle cell (VSMC) plasticity are critically involved in the pathogenesis of hypertension and arterial stiffness. MicroRNAs can mediate the cellular communication between vascular endothelial cells (ECs) and neighboring cells. Here, we investigated the role of endothelial-derived extracellular microRNA-92a (miR-92a) in promoting arterial stiffness by regulating EC–VSMC communication. Serum miR-92a level was higher in hypertensive patients than controls. Circulating miR-92a level was positively correlated with pulse wave velocity (PWV), systolic blood pressure (SBP), diastolic blood pressure (DBP), and serum endothelin-1 (ET-1) level, but inversely with serum nitric oxide (NO) level. In vitro, angiotensin II (Ang II)-increased miR-92a level in ECs mediated a contractile-to-synthetic phenotype change of co-cultured VSMCs. In Ang II-infused mice, locked nucleic acid-modified antisense miR-92a (LNA-miR-92a) ameliorated PWV, SBP, DBP, and impaired vasodilation induced by Ang II. LNA-miR-92a administration also reversed the increased levels of proliferative genes and decreased levels of contractile genes induced by Ang II in mouse aortas. Circulating serum miR-92a level and PWV were correlated in these mice. These findings indicate that EC miR-92a may be transported to VSMCs via extracellular vesicles to regulate phenotype changes of VSMCs, leading to arterial stiffness.


2022 ◽  
Vol 2022 ◽  
pp. 1-9
Author(s):  
Xiaomei Guan ◽  
Hai Xin ◽  
Meiling Xu ◽  
Jianlei Ji ◽  
Jun Li

Background. Data mining of current gene expression databases has not been previously performed to determine whether sirtuin 6 (SIRT6) expression participates in the pathological process of abdominal aortic aneurysm (AAA). The present study was aimed at investigating the role and mechanism of SIRT6 in regulating phenotype transformation of vascular smooth muscle cells (VSMC) in AAA. Methods. Three gene expression microarray datasets of AAA patients in the Gene Expression Omnibus (GEO) database and one dataset of SIRT6-knockout (KO) mice were selected, and the differentially expressed genes (DEGs) were identified using GEO2R. Furthermore, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses of both the AAA-related DEGs and the SIRT6-related DEGs were conducted. Results. GEO2R analysis showed that the expression of SIRT6 was downregulated for three groups and upregulated for one group in the three datasets, and none of them satisfied statistical significance. There were top 5 DEGs (KYNU, NPTX2, SCRG1, GRK5, and RGS5) in both of the human AAA group and SIRT6-KO mouse group. Top 25 ontology of the SIRT6-KO-related DEGs showed that several pathways including tryptophan catabolic process to kynurenine and negative regulation of cell growth were enriched in the tissues of thickness aortic wall biopsies of AAA patients. Conclusions. Although SIRT6 mRNA level itself did not change among AAA patients, SIRT6 may play an important role in regulating several signaling pathways with significant association with AAA, suggesting that SIRT6 mRNA upregulation is a protective factor for VSMC against AAA.


2022 ◽  
Vol 23 (2) ◽  
pp. 580
Author(s):  
Dawid M. Kaczor ◽  
Rafael Kramann ◽  
Tilman M. Hackeng ◽  
Leon J. Schurgers ◽  
Rory R. Koenen

Platelet factor 4 (CXCL4) is a chemokine abundantly stored in platelets. Upon injury and during atherosclerosis, CXCL4 is transported through the vessel wall where it modulates the function of vascular smooth muscle cells (VSMCs) by affecting proliferation, migration, gene expression and cytokine release. Variant CXCL4L1 is distinct from CXCL4 in function and expression pattern, despite a minor three-amino acid difference. Here, the effects of CXCL4 and CXCL4L1 on the phenotype and function of human VSMCs were compared in vitro. VSMCs were found to constitutively express CXCL4L1 and only exogenously added CXCL4 was internalized by VSMCs. Pre-treatment with heparin completely blocked CXCL4 uptake. A role of the putative CXCL4 receptors CXCR3 and DARC in endocytosis was excluded, but LDL receptor family members appeared to be involved in the uptake of CXCL4. Incubation of VSMCs with both CXCL4 and CXCL4L1 resulted in decreased expression of contractile marker genes and increased mRNA levels of KLF4 and NLRP3 transcription factors, yet only CXCL4 stimulated proliferation and calcification of VSMCs. In conclusion, CXCL4 and CXCL4L1 both modulate gene expression, yet only CXCL4 increases the division rate and formation of calcium-phosphate crystals in VSMCs. CXCL4 and CXCL4L1 may play distinct roles during vascular remodeling in which CXCL4 induces proliferation and calcification while endogenously expressed CXCL4L1 governs cellular homeostasis. The latter notion remains a subject for future investigation.


Sign in / Sign up

Export Citation Format

Share Document