Upregulation of Endothelial Nitric Oxide Synthase in Thoracic Aortic Aneurysms Associated with Bicuspid Aortic Valve

2014 ◽  
Vol 76 ◽  
pp. S48
Author(s):  
Mary P Kotlarczyk ◽  
Eric E Kelley ◽  
Sruti Shiva ◽  
Julie A Phillippi ◽  
Thomas G Gleason
2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Salah A. Mohamed ◽  
Arlo Radtke ◽  
Roza Saraei ◽  
Joern Bullerdiek ◽  
Hajar Sorani ◽  
...  

Aims. Dysregulated expression of the endothelial nitric oxide synthase (eNOS) is observed in aortic aneurysms associated with bicuspid aortic valve (BAV). We determined eNOS protein levels in various areas in ascending aortic aneurysms.Methods and Results. Aneurysmal specimens were collected from 19 patients, 14 with BAV and 5 with tricuspid aortic valve (TAV). ENOS protein levels were measured in the outer curve (convexity), the opposite side (concavity), the distal and above the sinotubular junction (proximal) aneurysm. Cultured aortic cells were treated with NO synthesis inhibitor L-NAME and the amounts of 35 apoptosis-related proteins were determined. In patients with BAV, eNOS levels were significantly lower in the proximal aorta than in the concavity and distal aorta. ENOS protein levels were also lower in the convexity than in the concavity. While the convexity and distal aorta showed similar eNOS protein levels in BAV and TAV patients, levels were higher in TAV proximal aorta. Inhibition of NO synthesis in aneurysmal aortic cells by L-NAME led to a cytosolic increase in the levels of mitochondrial serine protease HTRA2/Omi.Conclusion. ENOS protein levels were varied at different areas of the aneurysmal aorta. The dysregulation of nitric oxide can lead to an increase in proapoptotic HTRA2/Omi.


2007 ◽  
Vol 83 (4) ◽  
pp. 1290-1294 ◽  
Author(s):  
Diana Aicher ◽  
Carmen Urbich ◽  
Andreas Zeiher ◽  
Stefanie Dimmeler ◽  
Hans-Joachim Schäfers

2014 ◽  
Vol 306 (9) ◽  
pp. H1302-H1313 ◽  
Author(s):  
Ramzi N. El Accaoui ◽  
Sarah T. Gould ◽  
Georges P. Hajj ◽  
Yi Chu ◽  
Melissa K. Davis ◽  
...  

Risk factors for fibrocalcific aortic valve disease (FCAVD) are associated with systemic decreases in bioavailability of endothelium-derived nitric oxide (EDNO). In patients with bicuspid aortic valve (BAV), vascular expression of endothelial nitric oxide synthase (eNOS) is decreased, and eNOS−/− mice have increased prevalence of BAV. The goal of this study was to test the hypotheses that EDNO attenuates profibrotic actions of valve interstitial cells (VICs) in vitro and that EDNO deficiency accelerates development of FCAVD in vivo. As a result of the study, coculture of VICs with aortic valve endothelial cells (vlvECs) significantly decreased VIC activation, a critical early phase of FCAVD. Inhibition of VIC activation by vlvECs was attenuated by NG-nitro-l-arginine methyl ester or indomethacin. Coculture with vlvECs attenuated VIC expression of matrix metalloproteinase-9, which depended on stiffness of the culture matrix. Coculture with vlvECs preferentially inhibited collagen-3, compared with collagen-1, gene expression. BAV occurred in 30% of eNOS−/− mice. At age 6 mo, collagen was increased in both bicuspid and trileaflet eNOS−/− aortic valves, compared with wild-type valves. At 18 mo, total collagen was similar in eNOS−/− and wild-type mice, but collagen-3 was preferentially increased in eNOS−/− mice. Calcification and apoptosis were significantly increased in BAV of eNOS−/− mice at ages 6 and 18 mo. Remarkably, these histological changes were not accompanied by physiologically significant valve stenosis or regurgitation. In conclusion, coculture with vlvECs inhibits specific profibrotic VIC processes. In vivo, eNOS deficiency produces fibrosis in both trileaflet and BAVs but produces calcification only in BAVs.


Circulation ◽  
2000 ◽  
Vol 101 (20) ◽  
pp. 2345-2348 ◽  
Author(s):  
Tony C. Lee ◽  
Yidan D. Zhao ◽  
David W. Courtman ◽  
Duncan J. Stewart

Author(s):  
Chi-Ming Wei ◽  
Margarita Bracamonte ◽  
Shi-Wen Jiang ◽  
Richard C. Daly ◽  
Christopher G.A. McGregor ◽  
...  

Nitric oxide (NO) is a potent endothelium-derived relaxing factor which also may modulate cardiomyocyte inotropism and growth via increasing cGMP. While endothelial nitric oxide synthase (eNOS) isoforms have been detected in non-human mammalian tissues, expression and localization of eNOS in the normal and failing human myocardium are poorly defined. Therefore, the present study was designed to investigate eNOS in human cardiac tissues in the presence and absence of congestive heart failure (CHF).Normal and failing atrial tissue were obtained from six cardiac donors and six end-stage heart failure patients undergoing primary cardiac transplantation. ENOS protein expression and localization was investigated utilizing Western blot analysis and immunohistochemical staining with the polyclonal rabbit antibody to eNOS (Transduction Laboratories, Lexington, Kentucky).


Sign in / Sign up

Export Citation Format

Share Document