enos protein
Recently Published Documents


TOTAL DOCUMENTS

125
(FIVE YEARS 10)

H-INDEX

32
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Liqin Wang ◽  
Haiming Deng ◽  
Tengyu Wang ◽  
Yun Qiao ◽  
Jianbing Zhu ◽  
...  

Abstract BackgroundThe present study aimed to determine the protective effects of hypaconitine (HA) and glycyrrhetinic acid (GA) against chronic heart failure (CHF) in the rats and to explore the underlying molecular mechanisms.Methods The CHF rat model was established by transverse-aortic constriction (TAC) operation. The total cholesterol (TCHO) and triglyceride (TG) levels were determined by ELISA assay. The protein expression of fibroblast growth factor 2 (FGF2), vascular endothelial growth factor A (VEGFA) and endothelial nitric oxide synthase (eNOS) in the rat ventricular tissues was determined by immunohistochemistry. The serum metabolites were determined by LC-MS/MS assay.ResultsHA + GA treatment significantly reduced the plasma levels of TCHO and TG in the CHF rats. The expression of FGF2 and VEGFA protein was up-regulated and the expression of eNOS protein was down-regulated in the ventricular tissues of CHF rats, which was significantly restored after HA + GA treatment. HA + GA treatment down-regulated serum isonicotinic acid, phosphatidylcholine, cardiolipin, estrogen glucuronide, and glycocholic acid, up-regulated serum sphingosine and deoxycholic acid in the CHF rats.ConclusionIn conclusion, HA +GA showed protective effects on CHF in the rats, and the HA + GA may exert protective effects by reducing lipid levels, up-regulating the expression of FGF2 and VEGFA proteins, attenuating eNOS protein expression, and modulating metabolic pathways. However, the molecular mechanisms underlying HA + GA-mediated effects still require further examination.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Pallavi S. Kanthe ◽  
Bheemshetty S. Patil ◽  
Kusal K. Das ◽  
Prachi P. Parvatikar

2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Ghazala Shaheen ◽  
Sarwat Jahan ◽  
Nousheen Bibi ◽  
Asmat Ullah ◽  
Rani Faryal ◽  
...  

Abstract Background Preeclampsia (PE) is a complex pregnancy hypertensive disorder with multifaceted etiology. The endothelial nitric oxide synthase (eNOS) gene and nitric oxide (NO) levels has been reported to be associated with PE predisposition in various populations. Therefore, present study was designed to investigate the role of NO levels and eNOS gene variants in preeclamptic women in Pakistan. Methods A total of 600 women were evaluated, 188 of PE with mild features, 112 of PE with severe features and 300 normotensive pregnant women. NO levels were detected by Greiss reaction method and genotyping following sequencing was conducted for eNOS gene variants. Further insilico studies were performed to get insights into the structural and functional impact of identifies mutation on eNOS protein as well as on protein regulation. Results Reduced concentrations of NO were reported in all PE groups (p < 0.05) as compared to controls. The frequency of c.894 T (p.298Asp) and g.-786C alleles were significantly associated with PE. In addition, novel homozygous variant g.2051G > A was also significantly associated with PE when compared to normotensive women. Dynamic simulation studies revealed that Glu298Asp mutation destabilize the protein molecule and decrease the overall stability of eNOS protein. Molecular docking analysis of mutant promoter with transcription factors STAT3 and STAT6 proposed changes in protein regulation upon these reported mutations in upstream region of the gene. Conclusion Considering the results of current study, the functional alterations induced by these variants may influence the bioavailability of NO and represents a genetic risk factor for increased susceptibility to PE. However, large studies or meta-analysis are necessary to validate these findings.


Author(s):  
Jay S Mishra ◽  
Sathish Kumar

Abstract Preeclampsia is a pregnancy-related hypertensive disorder with unclear mechanisms. While hypersensitivity to angiotensin II via vasoconstrictive angiotensin type-1 receptor (AT1R) is observed in preeclampsia, the importance of vasodilatory angiotensin type-2 receptor (AT2R) in the control of vascular dysfunction is less clear. We assessed whether AT1R, AT2R and eNOS expression is altered in placental vessels of preeclamptic women and tested if ex vivo incubation with AT2R agonist Compound 21 (C21; 1 μM) could restore AT1R, AT2R and eNOS balance. Further, using a rat model of gestational hypertension induced by elevated testosterone, we examined whether C21 (1 μg·kg−1·day−1, oral) could preserve AT1R and AT2R balance and improve blood pressure, uterine artery blood flow, and vascular function. Western blots revealed that AT1R protein level was higher while AT2R and eNOS protein were reduced in preeclamptic placental vessels, and AT2R agonist C21 decreased AT1R and increased AT2R and eNOS protein levels in preeclamptic vessels. In testosterone-dams, blood pressure was higher, and uterine artery blood flow was reduced, and C21 treatment reversed these levels similar to those in controls dams. C21 attenuated the exaggerated Ang II contraction and improved endothelium-dependent vasorelaxation in uterine arteries of testosterone-dams. These C21-mediated vascular effects were associated with decreased AT1R and increased AT2R and eNOS protein levels. C21 also increased serum nitrate/nitrite and bradykinin production in testosterone-dams and attenuated the feto-placental growth restriction. Thus, AT1R upregulation and AT2R downregulation is observed in preeclampsia and testosterone-model, and increasing AT2R activity could help restore AT1R and AT2R balance and improve gestational vascular function.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Chee Lee Wee ◽  
Siti Safiah Mokhtar ◽  
Kirnpal Kaur Banga Singh ◽  
Sahran Yahaya ◽  
Susan Wai Sum Leung ◽  
...  

Diabetes mellitus contributes to macro- and microvascular complications, leading to adverse cardiovascular events. This study examined the effects of vitamin D deficiency on the vascular function and tissue oxidative status in the microcirculation of diabetic rats and to determine whether these effects can be reversed with calcitriol (active vitamin D metabolite) supplementation. Streptozotocin-induced diabetic rats were fed for 10 weeks with control diet (DC) or vitamin D-deficient diet without (DD) or with oral calcitriol supplementation (0.15 μg/kg) in the last four weeks (DDS) (10 rats each group). A nondiabetic rat group that received control diet was also included (NR). After 10 weeks, rats were sacrificed; mesenteric arterial rings with and without endothelium were studied using wire myograph. Western blotting of the mesenteric arterial tissue was performed to determine the protein expression of endothelial nitric oxide synthase (eNOS) enzyme. Antioxidant enzyme superoxide dismutase (SOD) activity and oxidative stress marker malondialdehyde (MDA) levels in the mesenteric arterial tissue were also measured. The DC group had significantly lower acetylcholine-induced relaxation and augmented endothelium-dependent contraction, with reduced eNOS expression, compared to NR rats. In mesenteric arteries of DD, acetylcholine-induced endothelium-dependent and sodium nitroprusside-induced endothelium-independent relaxations were lower than those in DC. Calcitriol supplementation in DDS restored endothelium-dependent relaxation. Mesenteric artery endothelium-dependent contraction of DD was greater than DC; it was not affected by calcitriol supplementation. The eNOS protein expression and SOD activity were significantly lower while MDA levels were greater in DD compared to DC; these effects were not observed in DDS that received calcitriol supplementation. In conclusion, vitamin D deficiency causes eNOS downregulation and oxidative stress, thereby impairing the vascular function and posing an additional risk for microvascular complications in diabetes. Calcitriol supplementation to diabetics with vitamin D deficiency could potentially be useful in the management of or as an adjunct to diabetes-related cardiovascular complications.


2021 ◽  
Author(s):  
Thorsten M. Leucker ◽  
Nuria Amat-Codina ◽  
Stephen Chelko ◽  
Gary Gerstenblith

AbstractVascular endothelial cell (EC) dysfunction is a pathological mediator of he development, progression, and clinical manifestations of atherosclerotic disease. Inflammation is associated with EC dysfunction, but the responsible mechanisms are not well characterized. There is substantial evidence that serum proprotein convertase subtilisin/kexin type 9 (PCSK9) is increased in pro-inflammatory states and that elevated PCSK9 levels are associated with adverse cardiovascular outcomes after controlling for traditional risk factors, including low-density lipoprotein (LDL) cholesterol.Here we investigate PCSK9 as a novel link between inflammation and vascular EC dysfunction, as assessed by nitric oxide (NO) bioavailability. Tumor necrosis factor alpha (TNF-α), a pro-inflammatory cytokine, increased PCSK9 mRNA expression and PCSK9 protein levels in isolated human aortic ECs, which were accompanied by reduced total and phosphorylated endothelial nitric oxide synthase (eNOS) protein levels and NO bioavailability. Finally, genetic PCSK9 reduction utilizing a PCSK9 specific siRNA in human aortic ECs resulted in the rescue of phosphorylated eNOS protein levels and NO bioavailability.Our results demonstrate that PCSK9 is increased in human aortic ECs exposed to a pro-inflammatory stimulus and that this increase is associated with EC dysfunction. Silencing of TNFα-mediated augmentation of PCSK9 expression utilizing a small interfering RNA against PCSK9 rescued the inflammation-induced EC dysfunction. These results indicate that PCSK9 is a causal link between inflammation and EC dysfunction, a potent driver of atherosclerotic cardiovascular disease.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Ahmad Khusairi Azemi ◽  
Siti Safiah Mokhtar ◽  
Aida Hanum Ghulam Rasool

Diabetes mellitus is associated with endothelial dysfunction; it causes progressive vascular damage resulting from an impaired endothelium-dependent vasorelaxation. In the diabetes state, presence of hyperglycemia and insulin resistance predisposes to endothelial dysfunction. Clinacanthus nutans, widely used as a traditional medicine for diabetes is reported to have hypoglycemic, hypolipidemic, antioxidant, and anti-inflammatory properties. However, the possibility of C. nutans affecting the vascular endothelial function in diabetes remains unclear. This study was aimed at evaluating the effects of C. nutans methanolic leaves extract (CNME) on endothelial function in a type 2 diabetes (T2DM) rat model. Sixty male Sprague-Dawley rats were divided into five groups (n=12 per group): nondiabetic control, nondiabetic treated with four weeks of CNME (500 mg/kg/daily), untreated diabetic rats, diabetic treated with metformin (300 mg/kg/daily), and diabetic treated with CNME (500 mg/kg/daily). T2DM was induced by a single intraperitoneal injection of low-dose streptozotocin (STZ) to rats fed with high-fat diet (HFD). Endothelial-dependent and endothelial-independent relaxations and contractions of the thoracic aorta were determined using the organ bath. Aortic endothelial nitric oxide synthase (eNOS) expression was determined using Western blotting. Endothelial-dependent relaxation was reduced in diabetic rats. Both diabetic groups treated with CNME or metformin significantly improved the impairment in endothelium-dependent vasorelaxation; this was associated with increased expression of aortic eNOS protein. CNME- and metformin-treated groups also reduced aortic endothelium-dependent and aortic endothelium-independent contractions in diabetics. Both of these diabetic-treated groups also reduced blood glucose levels and increased body weight compared to the untreated diabetic group. In conclusion, C. nutans improves endothelial-dependent vasodilatation and reduces endothelial-dependent contraction, thus ameliorating endothelial dysfunction in diabetic rats. This may occur due to its effect on increasing eNOS protein expression.


2019 ◽  
Vol 39 (1) ◽  
Author(s):  
Nazima Bashir ◽  
Kalist Shagirtha ◽  
Vaikundam Manoharan ◽  
Selvaraj Miltonprabu

Abstract The present study aims to evaluate the protective effect of grape seed proanthocyanidins (GSP) on cadmium (Cd)-induced testicular apoptosis, inflammation, and oxidative stress in rats. A total of 24 male Wistar rats were divided into four groups, namely control, GSP (100 mg/kg BW), Cd (5 mg/kg BW), and Cd+GSP. Cd-treated rat testes exhibited a significant increment in oxidative stress mediated inflammation and apoptosis. Pre-administration of GSP exhibit significant protection against the apoptotic and inflammatory damages elicited by Cd and uphold the intercellular antioxidant status in testes. Histological changes were studied and the immunohistochemical staining for caspase 3, HSP70, and eNOS protein expressions were also analyzed to justify the protective action of GSP. Furthermore, GSP prevented DNA damage, and enhanced the expression of antioxidant responsive elements Nrf2/HO-1 by PI3K/Akt-dependent pathway. Therefore, our results suggest that GSP acts as a multipotent antioxidant entity against Cd-induced oxidative testicular toxicity in rats.


Sign in / Sign up

Export Citation Format

Share Document