On the power sequence of a fuzzy matrix with convex combination of max-product and max-min operations

2016 ◽  
Vol 289 ◽  
pp. 157-163 ◽  
Author(s):  
Chia-Cheng Liu ◽  
Yan-Kuen Wu ◽  
Yung-Yih Lur ◽  
Chia-Lun Tsai
1999 ◽  
Vol 102 (2) ◽  
pp. 281-286 ◽  
Author(s):  
Zhou-Tian Fan
Keyword(s):  

1998 ◽  
Vol 93 (1) ◽  
pp. 75-85 ◽  
Author(s):  
Zhou-Tian Fan ◽  
De-Fu Liu
Keyword(s):  

TAPPI Journal ◽  
2010 ◽  
Vol 9 (6) ◽  
pp. 34-39
Author(s):  
AIYU QU ◽  
YANHUI AO ◽  
JUN YAN ◽  
GUIGAN FANG

To develop new wood cellulose resources and fast-growing pulpwood plantation fiber sources, it is very important to evaluate their pulping properties. A comprehensive multi-index pulping-suitability evaluation model is investigated in this paper by considering four fast-growing wood species. First, a new evaluation-index system for kraft pulp was developed based on traditional evaluation-index systems. Then, the membership degree of every index was analyzed to obtain a fuzzy matrix. The proportional contribution of each parameter to the main pulping properties could then be determined. Finally, a comprehensive evaluation model of kraft pulp properties was developed. The model is reliable compared with traditional assessment methods. The results confirmed the feasibility and rationality of developing new wood cellulose resources and fast-growing pulpwood plantations using fuzzy comprehensive evaluations.


Author(s):  
Deepali Khurana ◽  
Raj Kumar ◽  
Sibel Yalcin

We define two new subclasses, $HS(k, \lambda, b, \alpha)$ and \linebreak $\overline{HS}(k, \lambda, b, \alpha)$, of univalent harmonic mappings using multiplier transformation. We obtain a sufficient condition for harmonic univalent functions to be in $HS(k,\lambda,b,\alpha)$ and we prove that this condition is also necessary for the functions in the class $\overline{HS} (k,\lambda,b,\alpha)$. We also obtain extreme points, distortion bounds, convex combination, radius of convexity and Bernandi-Libera-Livingston integral for the functions in the class $\overline{HS}(k,\lambda,b,\alpha)$.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Wei Zhou ◽  
Xuexun Guo ◽  
Xiaofei Pei ◽  
Chengcai Zhang ◽  
Jun Yan ◽  
...  

This paper is aimed at the problem that the subjective drivability evaluation by experienced test drivers is limited in time efficiency and is of high cost and poor repeatability. In this article, an intelligent drivability objective evaluation tool (I-DOET) for passenger cars with dual-clutch transmission (DCT) is developed and verified by real vehicle testing. First, the signal denoising method and its key parameters, which are suitable for drivability evaluation, are selected based on analytic hierarchy process (AHP) and technique for order preference by similarity to ideal solution (TOPSIS). Besides, combined with the uncertainty characteristics of subjective judgment, a mathematical model of the objective drivability evaluation FARODE (fuzzy AHP-RS based on objective drivability evaluation) is proposed by using the fuzzy comprehensive assessment (FCA) method. The AHP and rough set (RS) method are used to calculate the subjective and objective weights of the drivability evaluation, respectively, and the proportion of subjective and objective weights is determined by the principle of minimum relative information entropy. The fuzzy matrix is built by membership function of the evaluation indexes. Finally, the static gearshift condition focused on by the subjective evaluation experts is taken as a case study. The predictability score is obtained by combining the drivability quantization lever vector, comprehensive weight, and fuzzy matrix. The experimental results indicate that the proposed method is applicable for objective drivability evaluation in passenger cars with DCT.


Sign in / Sign up

Export Citation Format

Share Document