Predicting the electrokinetic properties on an outcrop and reservoir composite carbonate surfaces in modified salinity brines using extended surface complexation models

Fuel ◽  
2022 ◽  
Vol 309 ◽  
pp. 122078
Author(s):  
Joel T. Tetteh ◽  
Anthony Pham ◽  
Edward Peltier ◽  
Justin M. Hutchison ◽  
Reza Barati Ghahfarokhi
Author(s):  
M. Pan ◽  
J.M. Cowley

Electron microdiffraction patterns, obtained when a small electron probe with diameter of 10-15 Å is directed to run parallel to and outside a flat crystal surface, are sensitive to the surface nature of the crystals. Dynamical diffraction calculations have shown that most of the experimental observations for a flat (100) face of a MgO crystal, such as the streaking of the central spot in the surface normal direction and (100)-type forbidden reflections etc., could be explained satisfactorily by assuming a modified image potential field outside the crystal surface. However the origin of this extended surface potential remains uncertain. A theoretical analysis by Howie et al suggests that the surface image potential should have a form different from above-mentioned image potential and also be smaller by several orders of magnitude. Nevertheless the surface potential distribution may in practice be modified in various ways, such as by the adsorption of a monolayer of gas molecules.


1993 ◽  
Vol 140 (5) ◽  
pp. 385 ◽  
Author(s):  
T.J. Lewis ◽  
J.P. Llewellyn ◽  
M.J. van der Sluijs

2017 ◽  
pp. 123-126
Author(s):  
S. V. Vorobjeva ◽  
O. V. Smirnov ◽  
V. O. Smirnova ◽  
T. V. Semenova

A correlation between the electrokinetic properties of biodispersion and the possibility of increasing the efficiency of water purification in electroprocessing is shown.


Author(s):  
Colin F. Wilson ◽  
Thomas Widemann ◽  
Richard Ghail

AbstractIn this paper, originally submitted in answer to ESA’s “Voyage 2050” call to shape the agency’s space science missions in the 2035–2050 timeframe, we emphasize the importance of a Venus exploration programme for the wider goal of understanding the diversity and evolution of habitable planets. Comparing the interior, surface, and atmosphere evolution of Earth, Mars, and Venus is essential to understanding what processes determined habitability of our own planet and Earth-like planets everywhere. This is particularly true in an era where we expect thousands, and then millions, of terrestrial exoplanets to be discovered. Earth and Mars have already dedicated exploration programmes, but our understanding of Venus, particularly of its geology and its history, lags behind. Multiple exploration vehicles will be needed to characterize Venus’ richly varied interior, surface, atmosphere and magnetosphere environments. Between now and 2050 we recommend that ESA launch at least two M-class missions to Venus (in order of priority): a geophysics-focussed orbiter (the currently proposed M5 EnVision orbiter – [1] – or equivalent); and an in situ atmospheric mission (such as the M3 EVE balloon mission – [2]). An in situ and orbital mission could be combined in a single L-class mission, as was argued in responses to the call for L2/L3 themes [3–5]. After these two missions, further priorities include a surface lander demonstrating the high-temperature technologies needed for extended surface missions; and/or a further orbiter with follow-up high-resolution surface radar imaging, and atmospheric and/or ionospheric investigations.


Sign in / Sign up

Export Citation Format

Share Document