Seamless stitching of biosynthetic gene cluster containing type I polyketide synthases using Red/ET mediated recombination for construction of stably co-existing plasmids

Gene ◽  
2015 ◽  
Vol 554 (2) ◽  
pp. 233-240 ◽  
Author(s):  
Chun Su ◽  
Xin-Qing Zhao ◽  
Hai-Na Wang ◽  
Rong-Guo Qiu ◽  
Li Tang
2005 ◽  
Vol 12 (3) ◽  
pp. 293-302 ◽  
Author(s):  
Wen Liu ◽  
Koichi Nonaka ◽  
Liping Nie ◽  
Jian Zhang ◽  
Steven D. Christenson ◽  
...  

2021 ◽  
Vol 10 (1) ◽  
pp. 37
Author(s):  
Sho Nishimura ◽  
Kazune Nakamura ◽  
Miyako Yamamoto ◽  
Daichi Morita ◽  
Teruo Kuroda ◽  
...  

Information on microbial genome sequences is a powerful resource for accessing natural products with significant activities. We herein report the unveiling of lucensomycin production by Streptomyces achromogenes subsp. streptozoticus NBRC14001 based on the genome sequence of the strain. The genome sequence of strain NBRC14001 revealed the presence of a type I polyketide synthase gene cluster with similarities to a biosynthetic gene cluster for natamycin, which is a polyene macrolide antibiotic that exhibits antifungal activity. Therefore, we investigated whether strain NBRC14001 produces antifungal compound(s) and revealed that an extract from the strain inhibited the growth of Candida albicans. A HPLC analysis of a purified compound exhibiting antifungal activity against C. albicans showed that the compound differed from natamycin. Based on HR-ESI-MS spectrometry and a PubChem database search, the compound was predicted to be lucensomycin, which is a tetraene macrolide antibiotic, and this prediction was supported by the results of a MS/MS analysis. Furthermore, the type I polyketide synthase gene cluster in strain NBRC14001 corresponded well to lucesomycin biosynthetic gene cluster (lcm) in S. cyanogenus, which was very recently reported. Therefore, we concluded that the antifungal compound produced by strain NBRC14001 is lucensomycin.


ChemBioChem ◽  
2010 ◽  
Vol 11 (9) ◽  
pp. 1245-1252 ◽  
Author(s):  
Ken Kasahara ◽  
Takanori Miyamoto ◽  
Takashi Fujimoto ◽  
Hiroki Oguri ◽  
Tetsuo Tokiwano ◽  
...  

ChemBioChem ◽  
2010 ◽  
Vol 11 (9) ◽  
pp. 1154-1154
Author(s):  
Ken Kasahara ◽  
Takanori Miyamoto ◽  
Takashi Fujimoto ◽  
Hiroki Oguri ◽  
Tetsuo Tokiwano ◽  
...  

2020 ◽  
Vol 48 (8) ◽  
pp. e48-e48 ◽  
Author(s):  
Peng Xu ◽  
Cyrus Modavi ◽  
Benjamin Demaree ◽  
Frederick Twigg ◽  
Benjamin Liang ◽  
...  

Abstract Microbial biosynthetic gene clusters are a valuable source of bioactive molecules. However, because they typically represent a small fraction of genomic material in most metagenomic samples, it remains challenging to deeply sequence them. We present an approach to isolate and sequence gene clusters in metagenomic samples using microfluidic automated plasmid library enrichment. Our approach provides deep coverage of the target gene cluster, facilitating reassembly. We demonstrate the approach by isolating and sequencing type I polyketide synthase gene clusters from an Antarctic soil metagenome. Our method promotes the discovery of functional-related genes and biosynthetic pathways.


2010 ◽  
Vol 54 (7) ◽  
pp. 2830-2839 ◽  
Author(s):  
Hoang Chuong Nguyen ◽  
Fatma Karray ◽  
Sylvie Lautru ◽  
Josette Gagnat ◽  
Ahmed Lebrihi ◽  
...  

ABSTRACT Streptomyces ambofaciens synthesizes spiramycin, a 16-membered macrolide antibiotic used in human medicine. The spiramycin molecule consists of a polyketide lactone ring (platenolide) synthesized by a type I polyketide synthase, to which three deoxyhexoses (mycaminose, forosamine, and mycarose) are attached successively in this order. These sugars are essential to the antibacterial activity of spiramycin. We previously identified four genes in the spiramycin biosynthetic gene cluster predicted to encode glycosyltransferases. We individually deleted each of these four genes and showed that three of them were required for spiramycin biosynthesis. The role of each of the three glycosyltransferases in spiramycin biosynthesis was determined by identifying the biosynthetic intermediates accumulated by the corresponding mutant strains. This led to the identification of the glycosyltransferase responsible for the attachment of each of the three sugars. Moreover, two genes encoding putative glycosyltransferase auxiliary proteins were also identified in the spiramycin biosynthetic gene cluster. When these two genes were deleted, one of them was found to be dispensable for spiramycin biosynthesis. However, analysis of the biosynthetic intermediates accumulated by mutant strains devoid of each of the auxiliary proteins (or of both of them), together with complementation experiments, revealed the interplay of glycosyltransferases with the auxiliary proteins. One of the auxiliary proteins interacted efficiently with the two glycosyltransferases transferring mycaminose and forosamine while the other auxiliary protein interacted only with the mycaminosyltransferase.


Sign in / Sign up

Export Citation Format

Share Document