antifungal compound
Recently Published Documents


TOTAL DOCUMENTS

265
(FIVE YEARS 69)

H-INDEX

35
(FIVE YEARS 4)

2021 ◽  
Vol 10 (1) ◽  
pp. 37
Author(s):  
Sho Nishimura ◽  
Kazune Nakamura ◽  
Miyako Yamamoto ◽  
Daichi Morita ◽  
Teruo Kuroda ◽  
...  

Information on microbial genome sequences is a powerful resource for accessing natural products with significant activities. We herein report the unveiling of lucensomycin production by Streptomyces achromogenes subsp. streptozoticus NBRC14001 based on the genome sequence of the strain. The genome sequence of strain NBRC14001 revealed the presence of a type I polyketide synthase gene cluster with similarities to a biosynthetic gene cluster for natamycin, which is a polyene macrolide antibiotic that exhibits antifungal activity. Therefore, we investigated whether strain NBRC14001 produces antifungal compound(s) and revealed that an extract from the strain inhibited the growth of Candida albicans. A HPLC analysis of a purified compound exhibiting antifungal activity against C. albicans showed that the compound differed from natamycin. Based on HR-ESI-MS spectrometry and a PubChem database search, the compound was predicted to be lucensomycin, which is a tetraene macrolide antibiotic, and this prediction was supported by the results of a MS/MS analysis. Furthermore, the type I polyketide synthase gene cluster in strain NBRC14001 corresponded well to lucesomycin biosynthetic gene cluster (lcm) in S. cyanogenus, which was very recently reported. Therefore, we concluded that the antifungal compound produced by strain NBRC14001 is lucensomycin.


Author(s):  
Parisa Aris ◽  
Lihong Yan ◽  
Yulong Wei ◽  
Ying Chang ◽  
Bihong Shi ◽  
...  

Abstract The polyketide griseofulvin is a natural antifungal compound and research in griseofulvin has been key in establishing our current understanding of polyketide biosynthesis. Nevertheless, the griseofulvin gsf biosynthetic gene cluster (BGC) remains poorly understood in most fungal species, including Penicillium griseofulvum where griseofulvin was first isolated. To elucidate essential genes involved in griseofulvin biosynthesis, we performed third-generation sequencing to obtain the genome of Penicillium griseofulvum strain D-756. Furthermore, we gathered publicly available genome of 11 other fungal species in which gsf gene cluster was identified. In a comparative genome analysis, we annotated and compared the gsf BGC of all 12 fungal genomes. Our findings show no gene rearrangements at the gsf BGC. Furthermore, seven gsf genes are conserved by most genomes surveyed whereas the remaining six were poorly conserved. This study provides new insights into differences between gsf BGC and suggests that seven gsf genes are essential in griseofulvin production.


2021 ◽  
Author(s):  
◽  
Ploi Yibmantasiri

<p>One of the major problems in biology is to identify genes that are involved in specific processes. Classical genetics and biochemistry, although powerful and informative, can be very labour intensive and do not necessarily characterise networked genes in processes that may overarch numerous biochemical pathways. Here we utilised genomic tools that are capable of defining networks to identify genes involved the complex target mode-of-action of a novel antifungal compound, neothyonidioside and in regulating specific stress processes and the PDR phenotype. The first part of this study investigated the mode-of-action of the antifungal compound, neothyonidioside (neo). We developed a neo resistant mutant strain then utilising a modification of SGAM, a genetic mapping tool, and application of genome-wide chemical-genetic profiling, we identified the neo resistant locus NCP1. This gene acts at a late step in ergosterol biosynthesis but is not the target of neo. The finding that many of the component genes in the ESCRT complex were necessary for neo resistance allowed us to predict and verify by high-content fluorescence microcopy that interruptions in the endosome-multivesicular body pathway were involved. From the known function of the ESCRT proteins and that neo binds ergosterol only above threshold concentrations of ergosterol (explaining the mutant phenotype) we concluded that neo disruption of membrane curvature and fusion capability in the endosome-vacuole pathway is its target. In the second part of this study we identified genes in a genome-wide fashion that modulate the pleiotropic drug resistance (PDR) phenotype and oxidative stress response. Many PDR targets are well studied ABC transporters (e.g. PDR5 , YOR1), but the modulating events between xenobiotic sensing and transcription factor activation, and possible crosstalk between PDR and other stress responses such as oxidative stress are not well characterised. To identify specific genes involved in the PDR and oxidative stress processes, we developed a fluorescent reporter screen for effects on the PDR-target ABC-transporters, Pdr5p and Yor1p tagged with GFP. For the oxidative stress response, the oxidative stress (OS) transcription factor Yap1p tagged with GFP was used. Each reporter was placed in the yeast non-essential gene deletion background of ~4800 strains which were then subjected to either xenobiotic treatments (PDR –GFP reporters) or oxidant treatments (Yap1p-GFP). We then screened for gene deletions which prevented the normal upregulation of PDR reporters in the presence of xenobiotics. Controls were included in the screens that assured we were assessing genes that must contribute to or act before the transcription of the ABC-transporters. A similar screening strategy was pursued for identifying gene deletions that prevent the normal nuclear re-localisation of Yap1p in the presence of oxidants. A major finding in this study was identification of genes contributing to the PDR phenotype that involved signalling (Rho-GTPase, MAPK), that were involved in RNA polymerase II mediator complexes and chromatin modification (subunits of ADA and SAGA histone acetyltransferase complexes), and that were involved in sphingo/phosphorlipids biosynthesis. Secondary screens comprising spot dilution growth assays and Western blots of Pdr5p abundance confirmed key genes of the primary screen and showed that these were specific and not global transcriptional effects.For some of the gene-dependencies, our results can only be construed to indicate the existence of alternative pathways underpinning the PDR phenotype in a Pdr1p/Pdr3p independent manner. We then supposed that if in fact PDR phenotypes are the result of genetic networks, then genes known to interact with the most highly connected hubs from our PDR screen results should also to some extent contribute to the PDR phenotype (spot dilution growth assays, Western blot abundance). A selection of 18 such genes that also appeared in our primary screen but were deemed to be below the cut-off point were phenotype tested and in 60% of the cases showed similar phenotypes to the genes already identified. This result not only proved the validity of the screening methods but validated the original supposition, i.e. that PDR phenotypes can be affected, through gene networks.</p>


2021 ◽  
Author(s):  
◽  
Ploi Yibmantasiri

<p>One of the major problems in biology is to identify genes that are involved in specific processes. Classical genetics and biochemistry, although powerful and informative, can be very labour intensive and do not necessarily characterise networked genes in processes that may overarch numerous biochemical pathways. Here we utilised genomic tools that are capable of defining networks to identify genes involved the complex target mode-of-action of a novel antifungal compound, neothyonidioside and in regulating specific stress processes and the PDR phenotype. The first part of this study investigated the mode-of-action of the antifungal compound, neothyonidioside (neo). We developed a neo resistant mutant strain then utilising a modification of SGAM, a genetic mapping tool, and application of genome-wide chemical-genetic profiling, we identified the neo resistant locus NCP1. This gene acts at a late step in ergosterol biosynthesis but is not the target of neo. The finding that many of the component genes in the ESCRT complex were necessary for neo resistance allowed us to predict and verify by high-content fluorescence microcopy that interruptions in the endosome-multivesicular body pathway were involved. From the known function of the ESCRT proteins and that neo binds ergosterol only above threshold concentrations of ergosterol (explaining the mutant phenotype) we concluded that neo disruption of membrane curvature and fusion capability in the endosome-vacuole pathway is its target. In the second part of this study we identified genes in a genome-wide fashion that modulate the pleiotropic drug resistance (PDR) phenotype and oxidative stress response. Many PDR targets are well studied ABC transporters (e.g. PDR5 , YOR1), but the modulating events between xenobiotic sensing and transcription factor activation, and possible crosstalk between PDR and other stress responses such as oxidative stress are not well characterised. To identify specific genes involved in the PDR and oxidative stress processes, we developed a fluorescent reporter screen for effects on the PDR-target ABC-transporters, Pdr5p and Yor1p tagged with GFP. For the oxidative stress response, the oxidative stress (OS) transcription factor Yap1p tagged with GFP was used. Each reporter was placed in the yeast non-essential gene deletion background of ~4800 strains which were then subjected to either xenobiotic treatments (PDR –GFP reporters) or oxidant treatments (Yap1p-GFP). We then screened for gene deletions which prevented the normal upregulation of PDR reporters in the presence of xenobiotics. Controls were included in the screens that assured we were assessing genes that must contribute to or act before the transcription of the ABC-transporters. A similar screening strategy was pursued for identifying gene deletions that prevent the normal nuclear re-localisation of Yap1p in the presence of oxidants. A major finding in this study was identification of genes contributing to the PDR phenotype that involved signalling (Rho-GTPase, MAPK), that were involved in RNA polymerase II mediator complexes and chromatin modification (subunits of ADA and SAGA histone acetyltransferase complexes), and that were involved in sphingo/phosphorlipids biosynthesis. Secondary screens comprising spot dilution growth assays and Western blots of Pdr5p abundance confirmed key genes of the primary screen and showed that these were specific and not global transcriptional effects.For some of the gene-dependencies, our results can only be construed to indicate the existence of alternative pathways underpinning the PDR phenotype in a Pdr1p/Pdr3p independent manner. We then supposed that if in fact PDR phenotypes are the result of genetic networks, then genes known to interact with the most highly connected hubs from our PDR screen results should also to some extent contribute to the PDR phenotype (spot dilution growth assays, Western blot abundance). A selection of 18 such genes that also appeared in our primary screen but were deemed to be below the cut-off point were phenotype tested and in 60% of the cases showed similar phenotypes to the genes already identified. This result not only proved the validity of the screening methods but validated the original supposition, i.e. that PDR phenotypes can be affected, through gene networks.</p>


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ci Fu ◽  
Xiang Zhang ◽  
Amanda O. Veri ◽  
Kali R. Iyer ◽  
Emma Lash ◽  
...  

AbstractFungal pathogens pose a global threat to human health, with Candida albicans among the leading killers. Systematic analysis of essential genes provides a powerful strategy to discover potential antifungal targets. Here, we build a machine learning model to generate genome-wide gene essentiality predictions for C. albicans and expand the largest functional genomics resource in this pathogen (the GRACE collection) by 866 genes. Using this model and chemogenomic analyses, we define the function of three uncharacterized essential genes with roles in kinetochore function, mitochondrial integrity, and translation, and identify the glutaminyl-tRNA synthetase Gln4 as the target of N-pyrimidinyl-β-thiophenylacrylamide (NP-BTA), an antifungal compound.


Pharmacia ◽  
2021 ◽  
Vol 68 (4) ◽  
pp. 837-843
Author(s):  
Qonita Gina Fadhilah ◽  
Iman Santoso ◽  
Andi Eko Maryanto ◽  
Sarini Abdullah ◽  
Yasman Yasman

Marine actinomycetes are being explored to discover potential actinomycetes that produce antifungal compounds. In a previous study, marine actinomycetes isolates from the mangrove ecosystem were found to inhibit growth of the phytopathogenic fungi Colletotrichum siamense KA. In this study, the three of these isolates with the highest antagonistic activity—SM11, SM14, and SM15—were evaluated for their antifungal activity using antibiosis assay. The fermentation was performed in SCB:PDB medium (1:1) for 6, 9, and 12 days. The results showed that SM14 was the strongest potential isolate; it inhibited the growth of C. siamense KA on average up to 64.90% for 12 days on PDA filtrate medium. Molecular identification showed SM14 was closely related to Streptomyces sanyensis, but had differences in morphological and biochemical characteristics compared to SM11 or SM15. This indicated that the three isolates were different strains and may challenge further research on identifying and analyzing their antifungal compounds.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1865
Author(s):  
Tatyana V. Volkova ◽  
Olga R. Simonova ◽  
German L. Perlovich

Poor solubility of new antifungal of 1,2,4-triazole class (S-119)—a structural analogue of fluconazole in aqueous media was estimated. The solubility improvement using different excipients: biopolymers (PEGs, PVP), surfactants (Brij S20, pluronic F-127) and cyclodextrins (α-CD, β-CD, 2-HP-β-CD, 6-O-Maltosyl-β-CD) was assessed in buffer solutions pH 2.0 and pH 7.4. Additionally, 2-HP-β-CD and 6-O-Maltosyl-β-CD were proposed as promising solubilizers for S-119. According to the solubilization capacity and micelle/water partition coefficients in buffer pH 7.4 pluronic F-127 was shown to improve S-119 solubility better than Brij S20. Among biopolymers, the greatest increase in solubility was shown in PVP solutions (pH 7.4) at concentrations above 4 w/v%. Complex analysis of the driving forces of solubilization, micellization and complexation processes matched the solubility results and suggested pluronic F-127 and 6-O-Maltosyl-β-CD as the most effective solubilizing agents for S-119. The comparison of S-119 diffusion through the cellulose membrane and lipophilic PermeaPad barrier revealed a considerable effect of the lipid layer on the decrease in the permeability coefficient. According to the PermeaPad, S-119 was classified as a highly permeated substance. The addition of 1.5 w/v% CDs in donor solution moves it to low-medium permeability class.


2021 ◽  
Vol 12 ◽  
Author(s):  
Tohir A. Bozorov ◽  
Zokir O. Toshmatov ◽  
Gulnaz Kahar ◽  
Daoyuan Zhang ◽  
Hua Shao ◽  
...  

The gut microflora of insects plays important roles throughout their lives. Different foods and geographic locations change gut bacterial communities. The invasive wood-borer Agrilus mali causes extensive mortality of wild apple, Malus sieversii, which is considered a progenitor of all cultivated apples, in Tianshan forests. Recent analysis showed that the gut microbiota of larvae collected from Tianshan forests showed rich bacterial diversity but the absence of fungal species. In this study, we explored the antagonistic ability of the gut bacteria to address this absence of fungi in the larval gut. The results demonstrated that the gut bacteria were able to selectively inhibit wild apple tree-associated fungi. Among them, Pseudomonas synxantha showed strong antagonistic ability, producing antifungal compounds. Using different analytical methods, such as column chromatography, mass spectrometry, HPLC, and NMR, an antifungal compound, phenazine-1-carboxylic acid (PCA), was identified. Activity of the compound was determined by the minimum inhibitory concentration method and electron microscopy. Moreover, our study showed that the gut bacteria could originate from noninfested apple microflora during infestation. Overall, the results showed that in newly invaded locations, A. mali larvae changed their gut microbiota and adopted new gut bacteria that prevented fungal colonization in the gut.


Author(s):  
Esmat Mirbzadeh Ardakani ◽  
Atefeh Sharifirad ◽  
Nasrin Pashootan ◽  
Mahsa Nayebhashemi ◽  
Mozhgan Zahmatkesh ◽  
...  

Superficial fungal infections are prevalent worldwide, with dermatophytes, as the most common cause. Various antifungal agents including azoles and allylamines are commonly used to treat dermatophytosis. However, their overuse has yielded drug-resistant strains, calling for the development of novel anti-mycotic compounds. Olorofim, is a newly developed antifungal compound, which targets pyrimidine biosynthesis in molds. The purpose of this study was to determine the in vitro and in vivo antifungal effects of olorofim against common dermatophytes. The in vitro activity of olorofim against dermatophytes was assessed by microtiter broth dilution method. Bioinformatic analysis of olorofim binding to dihydroorotate dehydrogenase (DHODH) of dermatophytes was also performed, using Aspergillus fumigatus DHODH as a template. The in vivo efficacy of the drug was investigated, using a guinea pig model, experimentally infected with Microsporum gypseum. Microtiter assays confirmed the high in vitro sensitivity of dermatophytes to olorofim (MIC= 0.015-0.06 mg/L). Amino acid sequence analysis indicated that DHODH is highly conserved among dermatophytes. The critical residues, in dermatophytes, involved in olorofim binding, were similar to their counterparts in A. fumigatus DHODH, which explains their susceptibility to olorofim. Typical skin lesions of dermatophyte infection, were observed in the guinea pig model, at seven days post-inoculation. Following one week of daily topical administration of olorofim, similar to the clotrimazole group, the skin lesions were resolved and normal hair growth patterns appeared. In light of the in vitro and in vivo activity of olorofim against dermatophytes, this novel agent may be considered as a treatment of choice, against dermatophytosis.


Sign in / Sign up

Export Citation Format

Share Document