scholarly journals Genome Sequence-Guided Finding of Lucensomycin Production by Streptomyces achromogenes Subsp. streptozoticus NBRC14001

2021 ◽  
Vol 10 (1) ◽  
pp. 37
Author(s):  
Sho Nishimura ◽  
Kazune Nakamura ◽  
Miyako Yamamoto ◽  
Daichi Morita ◽  
Teruo Kuroda ◽  
...  

Information on microbial genome sequences is a powerful resource for accessing natural products with significant activities. We herein report the unveiling of lucensomycin production by Streptomyces achromogenes subsp. streptozoticus NBRC14001 based on the genome sequence of the strain. The genome sequence of strain NBRC14001 revealed the presence of a type I polyketide synthase gene cluster with similarities to a biosynthetic gene cluster for natamycin, which is a polyene macrolide antibiotic that exhibits antifungal activity. Therefore, we investigated whether strain NBRC14001 produces antifungal compound(s) and revealed that an extract from the strain inhibited the growth of Candida albicans. A HPLC analysis of a purified compound exhibiting antifungal activity against C. albicans showed that the compound differed from natamycin. Based on HR-ESI-MS spectrometry and a PubChem database search, the compound was predicted to be lucensomycin, which is a tetraene macrolide antibiotic, and this prediction was supported by the results of a MS/MS analysis. Furthermore, the type I polyketide synthase gene cluster in strain NBRC14001 corresponded well to lucesomycin biosynthetic gene cluster (lcm) in S. cyanogenus, which was very recently reported. Therefore, we concluded that the antifungal compound produced by strain NBRC14001 is lucensomycin.

2020 ◽  
Vol 48 (8) ◽  
pp. e48-e48 ◽  
Author(s):  
Peng Xu ◽  
Cyrus Modavi ◽  
Benjamin Demaree ◽  
Frederick Twigg ◽  
Benjamin Liang ◽  
...  

Abstract Microbial biosynthetic gene clusters are a valuable source of bioactive molecules. However, because they typically represent a small fraction of genomic material in most metagenomic samples, it remains challenging to deeply sequence them. We present an approach to isolate and sequence gene clusters in metagenomic samples using microfluidic automated plasmid library enrichment. Our approach provides deep coverage of the target gene cluster, facilitating reassembly. We demonstrate the approach by isolating and sequencing type I polyketide synthase gene clusters from an Antarctic soil metagenome. Our method promotes the discovery of functional-related genes and biosynthetic pathways.


2010 ◽  
Vol 54 (7) ◽  
pp. 2830-2839 ◽  
Author(s):  
Hoang Chuong Nguyen ◽  
Fatma Karray ◽  
Sylvie Lautru ◽  
Josette Gagnat ◽  
Ahmed Lebrihi ◽  
...  

ABSTRACT Streptomyces ambofaciens synthesizes spiramycin, a 16-membered macrolide antibiotic used in human medicine. The spiramycin molecule consists of a polyketide lactone ring (platenolide) synthesized by a type I polyketide synthase, to which three deoxyhexoses (mycaminose, forosamine, and mycarose) are attached successively in this order. These sugars are essential to the antibacterial activity of spiramycin. We previously identified four genes in the spiramycin biosynthetic gene cluster predicted to encode glycosyltransferases. We individually deleted each of these four genes and showed that three of them were required for spiramycin biosynthesis. The role of each of the three glycosyltransferases in spiramycin biosynthesis was determined by identifying the biosynthetic intermediates accumulated by the corresponding mutant strains. This led to the identification of the glycosyltransferase responsible for the attachment of each of the three sugars. Moreover, two genes encoding putative glycosyltransferase auxiliary proteins were also identified in the spiramycin biosynthetic gene cluster. When these two genes were deleted, one of them was found to be dispensable for spiramycin biosynthesis. However, analysis of the biosynthetic intermediates accumulated by mutant strains devoid of each of the auxiliary proteins (or of both of them), together with complementation experiments, revealed the interplay of glycosyltransferases with the auxiliary proteins. One of the auxiliary proteins interacted efficiently with the two glycosyltransferases transferring mycaminose and forosamine while the other auxiliary protein interacted only with the mycaminosyltransferase.


ChemBioChem ◽  
2010 ◽  
Vol 11 (9) ◽  
pp. 1245-1252 ◽  
Author(s):  
Ken Kasahara ◽  
Takanori Miyamoto ◽  
Takashi Fujimoto ◽  
Hiroki Oguri ◽  
Tetsuo Tokiwano ◽  
...  

ChemBioChem ◽  
2010 ◽  
Vol 11 (9) ◽  
pp. 1154-1154
Author(s):  
Ken Kasahara ◽  
Takanori Miyamoto ◽  
Takashi Fujimoto ◽  
Hiroki Oguri ◽  
Tetsuo Tokiwano ◽  
...  

Antibiotics ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1447
Author(s):  
Hisayuki Komaki ◽  
Natsuko Ichikawa ◽  
Akira Hosoyama ◽  
Moriyuki Hamada ◽  
Yasuhiro Igarashi

Micromonospora sp. TP-A0316 and Micromonospora sp. TP-A0468 are producers of arisostatin and kosinostatin, respectively. Micromonospora sp. TP-A0316 showed a 16S rRNA gene sequence similarity of 100% to Micromonosporaoryzae CP2R9-1T whereas Micromonospora sp. TP-A0468 showed a 99.3% similarity to Micromonospora haikouensis 232617T. A phylogenetic analysis based on gyrB sequences suggested that Micromonospora sp. TP-A0316 is closely related to Micromonospora oryzae whereas Micromonospora TP-A0468 is an independent genomospecies. As Micromonospora sp. TP-A0468 showed some phenotypic differences to its closely related species, it was classified as a novel species, for which the name Micromonospora okii sp. nov. is proposed. The type strain is TP-A0468T (= NBRC 110461T). Micromonospora sp. TP-A0316 and M. okii TP-A0468T were both found to harbor 15 gene clusters for secondary metabolites such as polyketides and nonribosomal peptides in their genomes. Arisostatin-biosynthetic gene cluster (BGC) of Micromonospora sp. TP-A0316 closely resembled tetrocarcin A-BGC of Micromonospora chalcea NRRL 11289. A large type-I polyketide synthase gene cluster was present in each genome of Micromonospora sp. TP-A0316 and M. okii TP-A0468T. It was an ortholog of quinolidomicin-BGC of M. chalcea AK-AN57 and widely distributed in the genus Micromonospora.


2015 ◽  
Vol 3 (6) ◽  
Author(s):  
Hisayuki Komaki ◽  
Natsuko Ichikawa ◽  
Akira Hosoyama ◽  
Nobuyuki Fujita ◽  
Arinthip Thamchaipenet ◽  
...  

Here, we report the draft genome sequence of Microbispora sp. GMKU 363, a plant-derived actinomycete that produces linfuranone A, a linear polyketide modified with a furanone ring possessing adipocyte differentiation inducing activity. The biosynthetic gene cluster for linfuranone was identified by analyzing polyketide synthase genes in the genome.


Marine Drugs ◽  
2021 ◽  
Vol 19 (12) ◽  
pp. 673
Author(s):  
Jiang Chen ◽  
Shanwen Zhang ◽  
Yingying Chen ◽  
Xinpeng Tian ◽  
Yucheng Gu ◽  
...  

Verrucosispora sp. SCSIO 07399, a rare marine-derived actinomycete, produces a set of ansamycin-like polyketides kendomycin B–D (1–3) which possess potent antibacterial activities and moderate tumor cytotoxicity. Structurally, kendomycin B–D contain a unique aliphatic macrocyclic ansa scaffold in which the highly substituted pyran ring is connected to the quinone moiety. In this work, a type I/type III polyketide synthase (PKS) hybrid biosynthetic gene cluster coding for assembly of kendomycin B (kmy), and covering 33 open reading frames, was identified from Verrucosispora sp. SCSIO 07399. The kmy cluster was found to be essential for kendomycin B biosynthesis as verified by gene disruption and heterologous expression. Correspondingly, a biosynthetic pathway was proposed based on bioinformatics, cluster alignments, and previous research. Additionally, the role of type III PKS for generating the precursor unit 3,5-dihydroxybenzoic acid (3,5-DHBA) was demonstrated by chemical complementation, and type I PKS executed the polyketide chain elongation. The kmy cluster was found to contain a positive regulatory gene kmy4 whose regulatory effect was identified using real-time quantitative PCR (RT-qPCR). These advances shed important new insights into kendomycin B biosynthesis and help to set the foundation for further research aimed at understanding and exploiting the carbacylic ansa scaffold.


Author(s):  
Diana Escalante-Réndiz ◽  
Susana de-la-Rosa-García ◽  
Raúl Tapia-Tussell ◽  
Jesús Martín ◽  
Fernando Reyes ◽  
...  

The increasing incidence of Candida albicans infections and resistance to current antifungal therapies has led to the search for new and more effective antifungal compounds. Actinobacterial species from the Streptomyces genus are recognized as some of the major producers of antimicrobial compounds. Therefore, the aims of this study were: (1) the identification of Streptomyces strains isolated from Mexican tropical acidic soils, (2) the evaluation of their antifungal activity on C. albicans, and (3) the exploration of the presence of polyketide synthase genes in their genome and antifungal secondary metabolites in their extracts. Four actinobacterial strains, isolated from previously unexplored soils with antibacterial antecedents, were selected. These strains were identified as Streptomyces angustmyceticus S6A-03, Streptomyces manipurensis S3A-05 and S3A-09, and Streptomyces parvisporogenes S2A-04, according to their molecular analyses. The ethanol extract of the lyophilized supernatant of S. parvisporogenes displayed the most interesting antifungal activity against C. albicans, with a minimum inhibitory concentration (MIC) of 0.5 mg/mL. Type I polyketide synthase (PKS-I) and non-ribosomal peptide synthase (NRPS) genes were detected in all strains. In addition, type II PKS genes (PKS-II) were also found in S. manipurensis S3A-05 and S. parvisporogenes. LC-UV-HRMS analysis of the active organic extract of S. parvisporogenes indicated the presence of the known antifungal compound carbazomycin G as the major component.


Sign in / Sign up

Export Citation Format

Share Document