Long-term conversion from rice-wheat to rice-vegetable rotations drives variation in soil microbial communities and shifts in nitrogen-cycling through soil profiles

Geoderma ◽  
2021 ◽  
Vol 404 ◽  
pp. 115299
Author(s):  
Jie Shen ◽  
Qi Tao ◽  
Qin Dong ◽  
Youlin Luo ◽  
Jipeng Luo ◽  
...  
2021 ◽  
Vol 773 ◽  
pp. 145640
Author(s):  
Lili Rong ◽  
Longfei Zhao ◽  
Leicheng Zhao ◽  
Zhipeng Cheng ◽  
Yiming Yao ◽  
...  

2021 ◽  
Vol 1 (1) ◽  
Author(s):  
Joana Séneca ◽  
Andrea Söllinger ◽  
Craig W. Herbold ◽  
Petra Pjevac ◽  
Judith Prommer ◽  
...  

AbstractGlobal warming increases soil temperatures and promotes faster growth and turnover of soil microbial communities. As microbial cell walls contain a high proportion of organic nitrogen, a higher turnover rate of microbes should also be reflected in an accelerated organic nitrogen cycling in soil. We used a metatranscriptomics and metagenomics approach to demonstrate that the relative transcription level of genes encoding enzymes involved in the extracellular depolymerization of high-molecular-weight organic nitrogen was higher in medium-term (8 years) and long-term (>50 years) warmed soils than in ambient soils. This was mainly driven by increased levels of transcripts coding for enzymes involved in the degradation of microbial cell walls and proteins. Additionally, higher transcription levels for chitin, nucleic acid, and peptidoglycan degrading enzymes were found in long-term warmed soils. We conclude that an acceleration in microbial turnover under warming is coupled to higher investments in N acquisition enzymes, particularly those involved in the breakdown and recycling of microbial residues, in comparison with ambient conditions.


Agronomy ◽  
2017 ◽  
Vol 7 (2) ◽  
pp. 37 ◽  
Author(s):  
Sadikshya Dangi ◽  
Rebecca Tirado-Corbalá ◽  
James Gerik ◽  
Bradley Hanson

2020 ◽  
Vol 38 (1) ◽  
pp. 13-23 ◽  
Author(s):  
Monika Gorzelak ◽  
Breanne M. McAmmond ◽  
Jonathan D. Van Hamme ◽  
Christina Birnbaum ◽  
Corrina Thomsen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document