soil profiles
Recently Published Documents


TOTAL DOCUMENTS

1332
(FIVE YEARS 281)

H-INDEX

61
(FIVE YEARS 8)

Geoderma ◽  
2022 ◽  
Vol 409 ◽  
pp. 115656
Author(s):  
Nan Wang ◽  
Jie Peng ◽  
Jie Xue ◽  
Xianglin Zhang ◽  
Jingyi Huang ◽  
...  

2022 ◽  
pp. 096703352110618
Author(s):  
Orlando CH Tavares ◽  
Tiago R Tavares ◽  
Carlos R Pinheiro Junior ◽  
Luciélio M da Silva ◽  
Paulo GS Wadt ◽  
...  

The southwestern region of the Amazon has great environmental variability, presents a great complexity of pedoenvironments due to its rich variability of geological and geomorphological environments, as well as for being a transition region with other two Brazilian biomes. In this study, the use of pedometric tools (the Algorithms for Quantitative Pedology (AQP) R package and diffuse reflectance spectroscopy) was evaluated for the characterization of 15 soil profiles in southwestern Amazon. The AQP statistical package—which evaluates the soil in-depth based on slicing functions—indicated a wide range of variation in soil attributes, especially in the superficial horizons. In addition, the results obtained in the similarity analysis corroborated with the description of physical, chemical components and oxide contents in-depth, aiding the classification of soil profiles. The in-depth characterization of visible-near infrared spectra allowed inference of the pedogenetic processes of some profiles, setting precedents for future work aiming to establish analytical strategies for soil classification in southwestern Amazon based on spectral data.


Forests ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 83
Author(s):  
Sihan Wang ◽  
Weiwei Lu ◽  
Fangchao Zhang

Afforestation is a strategy to protect croplands and to sequestrate carbon in coastal areas. In addition, inorganic carbon is a considerable constitute of the coastal soil carbon pool. However, the vertical distribution and controlling factors of soil inorganic carbon (SIC) in plantations of coastal areas have been rarely studied. We analyzed the SIC content as well as physiochemical properties along soil profiles (0–100 cm) in young (YP) and mature (MP) poplar plantations in coastal eastern China. The soil profile was divided into six layers (0–10, 11–20, 21–40, 41–60, 61–80 and 81–100 cm) and a total of 36 soil samples were formed. The SIC content first increased from 0–10 cm (0.74%) to 11–20 cm (0.92%) and then fluctuated in the YP. In contrast, the SIC content increased with increasing soil depth until 40 cm and then leveled off, and the minimum and maximum appeared at 0–10 cm (0.54%) and 81–100 cm (0.98%) respectively in the MP. The soil inorganic carbon density was 12.05 and 12.93 kg m−2 within 0–100 cm in the YP and MP, respectively. Contrary to SIC, soil organic carbon (SOC) first decreased then levelled off within the soil profiles. Compared with the YP, the SIC content decreased 27.8% at 0–10 cm but increased 13.2% at 21–40 cm, meanwhile the SOC content in MP decreased 70.6% and 46.7% at 21–40 cm and 61–80 cm, respectively. The water-soluble Ca2+ and Mg2+ gradually decreased and increased, respectively within the soil profiles. The soil water-soluble Ca2+ increased 18.3% within 41–100 cm; however, the soil water-soluble Mg2+ decreased 32.7% within 21–100 cm in the MP when compared to the YP. Correlation analysis showed that SIC was negatively correlated with SOC, but positively correlated with soil pH and water-soluble Mg2+. Furthermore, structural equation modeling (SEM) indicated that SOC was the most important factor influencing the SIC content in the studied poplar plantations, indicating SOC sequestration promoted the dissolution of SIC. Therefore, our study highlights the trade-off between SIC and SOC in poplar plantations of coastal Eastern China.


Heliyon ◽  
2022 ◽  
pp. e08709
Author(s):  
Ntwanano Moirah Malepfane ◽  
Pardon Muchaonyerwa ◽  
Jeffrey Charles Hughes ◽  
Rebecca Zengeni

2022 ◽  
Vol 951 (1) ◽  
pp. 012009
Author(s):  
A Karim ◽  
Hifnalisa ◽  
Y Jufri ◽  
Y D Fazlina ◽  
Megawati

Abstract Soil organic matter is an indicator of soil fertility. The purpose of this study was to analyse various forms of soil organic carbon in citronella plantation, citronella plantation under pine tree, and soil under pine tree. Soil organic carbon in various forms was analysed from soil samples taken from each horizon and soil profile. The soil profiles observed were ultisol profiles planted with citronella, citronella under pine tree, and under pine tree, and slopes; 0-8%, 8-15%, 15 -25%, and 25-40%, in order to obtain 12 soil profiles with a total of 39 soil samples. Ultisols planted with citronella had higher soil organic carbon than ultisols planted with citronella under pine tree and ultisols under pine trees. Based on the slope, the highest soil organic carbon was obtained in the soil with a slope of 0-8%, and decreased with increasing slope. Based on soil depth, the highest soil organic carbon was obtained in the upper horizon, compared to the horizon below. The highest total soil organic carbon was obtained at the soil surface horizon with a slope of 0-8% and citronella was planted. This pattern of total soil organic carbon is similar to that of sesquioxide bound organic carbon, but is not consistent with that of free clay bound organic carbon.


2021 ◽  
Vol 70 (4) ◽  
pp. 369-380
Author(s):  
Marianna Ringer ◽  
◽  
Gergely Jakab ◽  
Péter Sipos ◽  
Máté Szabó ◽  
...  

This paper focuses on the vertical distribution and characterisation of pedogenic iron forms in a Gleysol- Histosol transect developed in a marshy area in the Danube-Tisza Interfluve, Hungary. Four soil profiles were investigated along a series of increasing waterlogging and spatial and temporal patterns of hydromorphic pedofeatures (characteristics of pedogenic iron forms) were recorded. Frequent and wide-range redox potential (Eh) changes caused the emergence of many types of redoximorphic iron features, including mottles, plaques and nodules. The forms of these features depended on the micro-environments determined by the vertical position in the soil profile and the presence of plant roots. The greatest iron enrichment occurred in the zone of most intensive and widest-range redox fluctuations. Increasing water saturation resulted the extension of gleyic pattern due to the existence of permanent reduction. Most of the features also showed annual variations during the varying periods of water saturation and aeration.


2021 ◽  
Vol 54 (12) ◽  
pp. 1783-1794
Author(s):  
R. V. Desyatkin ◽  
S. N. Lessovaia ◽  
M. V. Okoneshnikova ◽  
A. Z. Ivanova

Abstract— Data on major properties and clay mineralogy in the profiles of slightly differentiated Cryosols forming in cold ultracontinental climate of Yakutia are discussed. The particular objects are represented by the cryozems of tundra, forest-tundra, and northern taiga of the Anabar and Alazeya plateaus and by the palevaya (pale) soil of middle taiga in Central Yakutia. The differentiation of clay minerals in the vertical soil profiles is poorly pronounced because of the strong homogenizing impact of cryoturbation processes. The profile of pale soil displays minor differences in clay mineralogy despite the strong difference in acid–base conditions of the upper and lower horizons. However, the obtained data suggest that mineral weathering in pale soils of Central Yakutia is more advanced than it was concluded in the 1970s on the basis of data on the absence of pronounced trends in the vertical distribution of clay minerals in their profiles. This is in good agreement with the presence of a sufficiently thick upper humus horizon in these soils, which is typical of the soils of more humid regions. It is suggested that pale soils of Central Yakutia should be classified as soddy pale soils.


Sign in / Sign up

Export Citation Format

Share Document