nonlinear responses
Recently Published Documents


TOTAL DOCUMENTS

378
(FIVE YEARS 79)

H-INDEX

33
(FIVE YEARS 6)

2021 ◽  
Author(s):  
Stefan Kruse ◽  
Ulrike Herzschuh

The biodiversity of tundra areas in northern high latitudes is threatened by invasion of forests under global warming. However, poorly understood nonlinear responses of the treeline ecotone mean the timing and extent of tundra losses are unclear but policymakers need such information to optimize conservation efforts. Our individual based model LAVESI, developed for the Siberian tundra-taiga ecotone, can help improve our understanding. Consequently, we simulated treeline migration trajectories until the end of the millennium, causing a loss of tundra area when advancing north. Our simulations reveal that the treeline follows climate warming with a severe, century-long time lag, which is overcompensated by infilling of stands in the long run even when temperatures cool again. Our simulations reveal that only under ambitious mitigation strategies (RCP 2.6) will ~30% of original tundra areas remain in the north but separated into two disjunct refugia.


Meccanica ◽  
2021 ◽  
Author(s):  
Sadegh Amirzadegan ◽  
Mohammad Rokn-Abadi ◽  
R. D. Firouz-Abadi ◽  
Fahimeh Mehralian

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Wei Cao ◽  
Dan Wu ◽  
Lin Huang ◽  
Mei Pan ◽  
Taoli Huhe

AbstractChina accounts for 25% of the global greening. There are temporal and spatial differences of China’s greening and intrinsic driving forces. Thus, it is crucial to determinize the contributions of human activities and climate change on greening at region scale. The Beijing–Tianjin–Hebei Region (BTHR) is one of the most active areas with human activities in China. It is necessary to explore negative or positive impacts of human activities on the regional greening or browning under climate change. A time series of annual vegetation coverage from satellite data was selected to quantify regional greening in the BTHR from 2000 to 2019 and their responses to climate change and human activities. Results showed generally widespread greening over the last 20 years at an average increased rate of 0.036 decade−1 in vegetation coverage (P < 0.01). Overall warmer and wetter climate across the BTHR were positively correlated with regional greening. The positive effects of human activities on greening accounted for 48.4% of the BTHR, especially the benefits of ecological restoration projects and the agricultural activities. Increases in vegetation coverage had resulted from the combined effects of climate change and human activities. Climate change had a stronger influence on vegetation coverage than human activities. Contributions of climate change to greening and browning was about 74.1% and < 20%, respectively. The decrease in vegetation coverage was mainly the results of the inhibition of human activities. More detailed socioeconomic and anthropogenic datasets are required for further analysis. Further research consideration would focus on the nonlinear responses of vegetation to climate change.


2021 ◽  
Vol 21 (19) ◽  
pp. 15135-15152
Author(s):  
Mengmeng Li ◽  
Zihan Zhang ◽  
Quan Yao ◽  
Tijian Wang ◽  
Min Xie ◽  
...  

Abstract. Nitrate is an increasingly important component of fine particulate matter (PM2.5) in Chinese cities. The production of nitrate is not only related to the abundance of its precursor, but it is also supported by the atmospheric photochemical oxidants, raising a new challenge for the current emission control actions in China. This paper uses comprehensive measurements and a regional meteorology–chemistry model with optimized mechanisms to establish the nonlinear responses between particulate nitrate and the emission controls of nitrogen oxides (NOx) in the megalopolises of China. Nitrate is an essential component of PM2.5 in eastern China, accounting for 9.4 %–15.5 % and 11.5 %–32.1 % of the PM2.5 mass for the warm and cold seasons. The hypothetical NOx emission reduction scenarios (−10 % to −80 %) during summer–autumn result in almost linearly lower PM2.5 by −2.2 % in Beijing–Tianjin–Hebei (BTH) and −2.9 % in Yangtze River Delta (YRD) per 10 % reduction of NOx emissions, whereas they lead to a rather complicated response of PM components in winter. Wintertime nitrate is found to increase by +4.1 % in BTH and +5.1 % in YRD per 10 % reduction of NOx emissions, with nearly unchanged nitric acid (HNO3) and higher dinitrogen pentoxide (N2O5) intermediate products produced from the increased atmospheric oxidant levels. An inflexion point appears at 30 %–50 % NOx emission reduction, and a further reduction in NOx emissions is predicted to cause −10.5 % reduction of nitrate for BTH and −7.7 % for YRD per 10 % reduction of NOx emissions. In addition, the 2012–2016 NOx control strategy actually leads to no changes or even increases of nitrate in some areas (8.8 % in BTH and 14.4 % in YRD) during winter. Our results also emphasize that ammonia (NH3) and volatile organic compounds (VOCs) are effective in controlling nitrate pollution, whereas decreasing the sulfur dioxide (SO2) and NOx emissions may have counterintuitive effects on nitrate aerosols. This paper helps understand the nonlinear aerosol and photochemistry feedbacks and defines the effectiveness of proposed mitigations for the increasingly serious nitrate pollution in China.


Author(s):  
J Grey Monroe ◽  
Haoran Cai ◽  
David L Des Marais

Abstract Water availability is perhaps the greatest environmental determinant of plant yield and fitness. However, our understanding of plant-water relations is limited because—like many studies of organism-environment interaction—it is primarily informed by experiments considering performance at two discrete levels—wet and dry—rather than as a continuously varying environmental gradient. Here, we used experimental and statistical methods based on function-valued traits to explore genetic variation in responses to a continuous soil moisture gradient in physiological and morphological traits among 10 genotypes across two species of the model grass genus Brachypodium. We find that most traits exhibit significant genetic variation and nonlinear responses to soil moisture variability. We also observe differences in the shape of these nonlinear responses between traits and genotypes. Emergent phenomena arise from this variation including changes in trait correlations and evolutionary constraints as a function of soil moisture. Our results point to the importance of considering diversity in nonlinear organism-environment relationships to understand plastic and evolutionary responses to changing climates.


2021 ◽  
Author(s):  
Thomas Forster ◽  
Vikrant Chauhan ◽  
Markus Mayer ◽  
Elena Mayer ◽  
Andreas Mayer ◽  
...  

2021 ◽  
Vol 9 (3B) ◽  
Author(s):  
TALASLIOĞLU Tuğrul ◽  

The nonlinearity issue is one of the promising fields in the engineering area. Particularly, the geometric nonlinearity bears big importance for the structural systems showing a tendency of larger deflection. In order to obtain a correct load-deflection relation for the structural system subjected to any external load, an advanced incremental-iterative based approach has to be utilized in the analysis of nonlinear responses. Arc length method has been proven to be the most perfect one among the nonlinear analysis approaches. Thus, it is extensively applied to the structural systems with pin-connected joints. This study attempts to compare two variations of arc length method named “spherical” and “linearized” for the nonlinear analysis of structural system with rigid-connected joints. Also, two different element formulations are utilized to discretize the structural systems. Two open-source coded programs, Opensees and FEAP, are employed for six benchmark structural systems in order to compare the performance of employed arc-length techniques. Furthermore, in order to make a further observation in the nonlinear behavior of application examples, their simulations are not only sketched using graphs, but also displayed through the movies for each of benchmark tests. Consequently, the linearized type arc length technique implemented in FEAP shows a more success with a better prediction of load-deflection relation, noting that Opensees has a big advantage of having an element, which is capable of simulating the geometric nonlinearity.


Sign in / Sign up

Export Citation Format

Share Document