scholarly journals Chemical weathering trends in fine-grained ephemeral stream sediments of the McMurdo Dry Valleys, Antarctica

Geomorphology ◽  
2017 ◽  
Vol 281 ◽  
pp. 13-30 ◽  
Author(s):  
Kristen R. Marra ◽  
Megan E. Elwood Madden ◽  
Gerilyn S. Soreghan ◽  
Brenda L. Hall
2021 ◽  
Author(s):  
◽  
Cassandra Anh Trinh-Le

<p>The hyper-arid, cryotic, wind-dominated conditions in the high-elevation McMurdo Dry Valleys of Antarctica are among Earth’s most extreme environments and represent the closest terrestrial analog to the surface of Mars. These unique conditions result in complex surface processes that occur in the overall absence of liquid water. However, since water is typically believed to be required for these processes to occur, the mechanisms responsible for how these processes can persist in this environment are poorly understood. Previous studies that focused on individual processes of sedimentation in the Dry Valleys leave questions regarding the role of water in dry cryotic sedimentation as well as the rates at which these processes occur. This thesis addresses these questions by combining Optically Stimulated Luminescence (OSL) dating, meteoric Beryllium-10 (10Be) measurements, soil geochemistry analysis, and petrographic microscopy analysis on ice-cemented permafrost cores taken from University Valley, one of the high-elevation Dry Valleys, where the availability and effects of liquid water are minimal. These analyses were used to explore four main sedimentation processes that occur in the Dry Valleys: chemical weathering, fine particle translocation, eolian transport, and physical weathering. Analyzed together, findings from these analyses comprehensively describe the complex processes involved in dry cryotic sedimentation and determine the roles of different phases of water in this environment.   Sediments in University Valley have accumulated at a rate of approximately 2.1 mm/ka for the last 200 ka, as dated by OSL, from erosion of the valley walls and deposition of windblown dust. Sediment accumulation is influenced by topography of the valley floor, depth of the ice table, aspect of the valley walls, wind direction, and mechanical breakdown of rocks due to solar heating. While persistent winds constantly remobilize fine particles and dust in the upper few cm of the dry ground, sediment grains that are sand-sized or larger do not undergo significant remobilization, and sediments in the ice-cemented ground are unaffected by remobilization and translocation processes. Rare clay bridges seen in thin section show that small, infrequent, transient surface wetting events have occurred over the last 200 ka. High anion concentrations associated with high surface meteoric 10Be measurements and clay bridges indicate that the source of these wetting events is the melting of wind-blown snow from coastal regions. Patterns in meteoric Be measurements show that these small transient wetting events are not sufficient to translocate fine particles through the soil profile, which suggests that the role of liquid water as a transporting agent is negligible in this environment. Chemical weathering in University Valley appears to be controlled by two main components: dolerite content of the sediments, and exposure to the atmosphere at the ground surface where condensation of water vapor onto grain surfaces readily leaches ions from dolerite grains under the oxidizing conditions of the Dry Valleys. In the absence of liquid water, chemical processes that occur in this environment rely on water vapor.   Together, these results indicate that surfaces in University Valley are remarkably young and sedimentologically active. Because University Valley represents one of the closest terrestrial analogs to the surface of Mars, findings from this thesis may be applicable to understanding the timescales and the processes that control anhydrous sedimentation on the surface of Mars.</p>


2021 ◽  
Author(s):  
◽  
Cassandra Anh Trinh-Le

<p>The hyper-arid, cryotic, wind-dominated conditions in the high-elevation McMurdo Dry Valleys of Antarctica are among Earth’s most extreme environments and represent the closest terrestrial analog to the surface of Mars. These unique conditions result in complex surface processes that occur in the overall absence of liquid water. However, since water is typically believed to be required for these processes to occur, the mechanisms responsible for how these processes can persist in this environment are poorly understood. Previous studies that focused on individual processes of sedimentation in the Dry Valleys leave questions regarding the role of water in dry cryotic sedimentation as well as the rates at which these processes occur. This thesis addresses these questions by combining Optically Stimulated Luminescence (OSL) dating, meteoric Beryllium-10 (10Be) measurements, soil geochemistry analysis, and petrographic microscopy analysis on ice-cemented permafrost cores taken from University Valley, one of the high-elevation Dry Valleys, where the availability and effects of liquid water are minimal. These analyses were used to explore four main sedimentation processes that occur in the Dry Valleys: chemical weathering, fine particle translocation, eolian transport, and physical weathering. Analyzed together, findings from these analyses comprehensively describe the complex processes involved in dry cryotic sedimentation and determine the roles of different phases of water in this environment.   Sediments in University Valley have accumulated at a rate of approximately 2.1 mm/ka for the last 200 ka, as dated by OSL, from erosion of the valley walls and deposition of windblown dust. Sediment accumulation is influenced by topography of the valley floor, depth of the ice table, aspect of the valley walls, wind direction, and mechanical breakdown of rocks due to solar heating. While persistent winds constantly remobilize fine particles and dust in the upper few cm of the dry ground, sediment grains that are sand-sized or larger do not undergo significant remobilization, and sediments in the ice-cemented ground are unaffected by remobilization and translocation processes. Rare clay bridges seen in thin section show that small, infrequent, transient surface wetting events have occurred over the last 200 ka. High anion concentrations associated with high surface meteoric 10Be measurements and clay bridges indicate that the source of these wetting events is the melting of wind-blown snow from coastal regions. Patterns in meteoric Be measurements show that these small transient wetting events are not sufficient to translocate fine particles through the soil profile, which suggests that the role of liquid water as a transporting agent is negligible in this environment. Chemical weathering in University Valley appears to be controlled by two main components: dolerite content of the sediments, and exposure to the atmosphere at the ground surface where condensation of water vapor onto grain surfaces readily leaches ions from dolerite grains under the oxidizing conditions of the Dry Valleys. In the absence of liquid water, chemical processes that occur in this environment rely on water vapor.   Together, these results indicate that surfaces in University Valley are remarkably young and sedimentologically active. Because University Valley represents one of the closest terrestrial analogs to the surface of Mars, findings from this thesis may be applicable to understanding the timescales and the processes that control anhydrous sedimentation on the surface of Mars.</p>


2013 ◽  
Vol 26 (1) ◽  
pp. 49-68 ◽  
Author(s):  
M.R. Salvatore ◽  
J.F. Mustard ◽  
J.W. Head ◽  
D.R. Marchant ◽  
M.B. Wyatt

AbstractOrbital spectroscopy and laboratory analyses are utilized to identify major geochemical variations throughout the Ferrar Dolerite exposed in the McMurdo Dry Valleys (MDV) of Antarctica. Our laboratory results highlight the range of primary and secondary chemical and spectral variations observed throughout the dolerite, and provide the necessary calibration for detailed orbital investigations. Pure dolerite units are identified and analysed throughout the MDV using Advanced Land Imager (ALI) and Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) orbital datasets. In conjunction with our laboratory analyses, orbital analyses indicate that the dolerite sills are dominated by MgO concentrations of c. 6–7 wt% except where influenced by orthopyroxene-laden magmatic injections, where MgO concentrations can reach as high as 32.5 wt%. ASTER analyses also indicate that spectrally significant alteration is limited primarily to surfaces dominated by fine-grained dolerites, which form and preserve well developed alteration rinds due to their resistance to physical erosion. The archetype of these secondary signatures is Beacon Valley, where a combination of cold, dry, and stable environmental conditions and the presence of fine-grained dolerites results in strong alteration signatures. This work provides unprecedented spatial coverage of meso- and macro-scale geochemical features that, until now, have only been identified in field and laboratory investigations.


2010 ◽  
Vol 22 (6) ◽  
pp. 662-672 ◽  
Author(s):  
Kathleen A. Welch ◽  
W. Berry Lyons ◽  
Carla Whisner ◽  
Christopher B. Gardner ◽  
Michael N. Gooseff ◽  
...  

AbstractStreams in the McMurdo Dry Valleys, Antarctica, flow during the summer melt season (4–12 weeks) when air temperatures are close to the freezing point of water. Because of the low precipitation rates, streams originate from glacial meltwater and flow to closed-basin lakes on the valley floor. Water samples have been collected from the streams in the Dry Valleys since the start of the McMurdo Dry Valleys Long-Term Ecological Research project in 1993 and these have been analysed for ions and nutrient chemistry. Controls such as landscape position, morphology of the channels, and biotic and abiotic processes are thought to influence the stream chemistry. Sea-salt derived ions tend to be higher in streams that are closer to the ocean and those streams that drain the Taylor Glacier in western Taylor Valley. Chemical weathering is an important process influencing stream chemistry throughout the Dry Valleys. Nutrient availability is dependent on landscape age and varies with distance from the coast. The streams in Taylor Valley span a wide range in composition and total dissolved solids and are surprisingly similar to a wide range of much larger temperate and tropical river systems.


2016 ◽  
Author(s):  
Devin Castendyk ◽  
◽  
Maciej K. Obryk ◽  
Sasha Z. Leidman ◽  
Michael Gooseff ◽  
...  

2016 ◽  
Author(s):  
Melisa A. Diaz ◽  
◽  
Susan A. Welch ◽  
Kathleen A. Welch ◽  
Alia L. Khan ◽  
...  

2016 ◽  
Author(s):  
Kate M. Swanger ◽  
◽  
Joerg M. Schaefer ◽  
Gisela Winckler

2017 ◽  
Author(s):  
Melisa A. Diaz ◽  
◽  
Byron J. Adams ◽  
Alia L. Khan ◽  
Kathleen A. Welch ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document