Drainage integration in extensional tectonic settings

Geomorphology ◽  
2021 ◽  
pp. 108082
Author(s):  
Phillip H. Larson ◽  
Ronald I. Dorn ◽  
Brian F. Gootee ◽  
Yeong Bae Seong
Author(s):  
Donald H. W. Hutton

ABSTRACTThis paper is a structural and tectonic approach to the emplacement and deformation of granitoids. The main methods available in structural geology are briefly reviewed and this emphasises that (a) a wealth of data, particularly strain and shear sense, which pertain to these problems, can be determined in and around plutons; (b) given the nature, unlike many other crustal rock types, of granites to crystallise from isotropic through weakly anisotropic crystal suspension fluids, that deformation which has occurred in these states may not be well preserved; and (c) it is entirely possible, using this methodology, to separate deformation resulting from externally originating tectonic stresses from that which is associated with internal magma-related stresses. It is also recommended that the genetically-based Cloosian classification of granite fabrics and structures into “primary” (magmatic flow/magmatic flow current) and “secondary”, be abandoned and that a more observationally-based approach which classifies granite deformation fabrics and structures according to their time of occurrence relative to the crystallisation state of the congealing magma, be adopted (i.e. pre-full crystallisation deformation and crystal plastic strain deformation).Examples of recent, structurally based, studies of emplacement mechanisms of plutons within tectonic settings are described and these show that, in general, space for magma can be created by the combination of tectonically-created cavities and internal magma-related buoyancy. This occurs in both transcurrent and extensional tectonic settings and there is no reason to doubt that it can happen in compressive-contractional regimes. It is concluded that transient and permanent space creation, such as may be exploited by available magmas, is a typical feature of the tectonically stressed and deforming lithosphere and this, in combination with the natural buoyancy and ascending tendency of magmas, can generate the varied emplacement mechanisms of granites.


1999 ◽  
Vol 104 (B10) ◽  
pp. 23069-23079 ◽  
Author(s):  
D. Robinson ◽  
V. V. Reverdatto ◽  
R. E. Bevins ◽  
O. P. Polyansky ◽  
V. S. Sheplev

2016 ◽  
Vol 82 ◽  
pp. 1-15 ◽  
Author(s):  
Jörg Meixner ◽  
Eva Schill ◽  
Jens C. Grimmer ◽  
Emmanuel Gaucher ◽  
Thomas Kohl ◽  
...  

2002 ◽  
Vol 59 (1-4) ◽  
pp. 163-210 ◽  
Author(s):  
Lyal B. Harris ◽  
Hemin A. Koyi ◽  
Haakon Fossen

1988 ◽  
Vol 52 (368) ◽  
pp. 577-585 ◽  
Author(s):  
P. T. Leat ◽  
R. N. Thompson ◽  
M. A. Morrison ◽  
G. L. Hendry ◽  
A. P. Dickin

AbstractThe rock association of minette with silicic lavas and intrusions (granites, syenites, dacites) is a common geologic feature in both collisional and extensional tectonic settings. Considerable doubt exists as to whether a genetic link exists between these mafic and silicic rocks. We describe a Miocene sill from NW Colorado which is a clear example of a mixed magma consisting of originally-liquid inclusions of minette in a silicic trachydacite host. Chemical and Sr, Nd and Pb isotopic data are consistent with derivation of the silicic host magma of the sill dominantly by fractional crystallization of the minette magma. Correlations between the elemental compositions of the rock types and their Sr and Nd isotopic ratios imply minor assimilation of continental crust with relatively low values of both 87Sr/86Sr and 143Nd/144Nd, concomitantly with fractional crystallization. The parental minette magma was probably derived by partial melting of subcontinental lithospheric mantle. While the sill was emplaced in a rift-like tectonic setting, the chemical and isotopic composition of the lithosphere-derived minette magmas (and hence the silicic fractionates) was largely independent of this setting, but dependent upon the composition and age of the lithospheric mantle and crust.


Sign in / Sign up

Export Citation Format

Share Document