crustal growth
Recently Published Documents


TOTAL DOCUMENTS

535
(FIVE YEARS 121)

H-INDEX

77
(FIVE YEARS 6)

2022 ◽  
Vol 369 ◽  
pp. 106532
Author(s):  
Mathias Hueck ◽  
Sebastián Oriolo ◽  
Miguel A.S. Basei ◽  
Pedro Oyhantçabal ◽  
Beatrix M. Heller ◽  
...  

Author(s):  
Yujian Wang ◽  
Dicheng Zhu ◽  
Chengfa Lin ◽  
Fangyang Hu ◽  
Jingao Liu

Accretionary orogens function as major sites for the generation of continental crust, but the growth model of continental crust remains poorly constrained. The Central Asian Orogenic Belt, as one of the most important Phanerozoic accretionary orogens on Earth, has been the focus of debates regarding the proportion of juvenile crust present. Using published geochemical and zircon Hf-O isotopic data sets for three belts in the Eastern Tianshan terrane of the southern Central Asian Orogenic Belt, we first explore the variations in crustal thickness and isotopic composition in response to tectono-magmatic activity over time. Steady progression to radiogenic zircon Hf isotopic signatures associated with syn-collisional crustal thickening indicates enhanced input of mantle-derived material, which greatly contributes to the growth of the continental crust. Using the surface areas and relative increases in crustal thickness as the proxies for magma volumes, in conjunction with the calculated mantle fraction of the mixing flux, we then are able to determine that a volume of ∼14−22% of juvenile crust formed in the southern Central Asian Orogenic Belt during the Phanerozoic. This study highlights the validity of using crustal thickness and zircon isotopic signatures of magmatic rocks to quantify the volume of juvenile crust in complex accretionary orogens. With reference to the crustal growth pattern in other accretionary orogens and the Nd-Hf isotopic record at the global scale, our work reconciles the rapid crustal growth in the accretionary orogens with its episodic generation pattern in the formation of global continental crust.


2021 ◽  
pp. 1-13
Author(s):  
K. Papapavlou ◽  
A. Moukhsil ◽  
A. Poirier ◽  
J.H.F.L. Davies

Abstract The detrital zircon perspective on the pre-collisional crustal evolution of the Grenville Province remains poorly explored. In this study, we conducted in situ laser ablation U–Pb–Hf isotopic microanalysis on detrital zircon grains from three pre-orogenic (>1 Ga) supracrustal sequences that crop out in the Central Grenville Province (Lac Saint-Jean region, QC, CA). Detrital zircon grains from vestiges of these sequences record three dominant age peaks at c. 1.46 Ga, 1.62 Ga, 1.85 Ga, and a subordinate peak at 2.7 Ga. The 1.46 Ga and 1.62 Ga age peaks are recorded in detrital zircon grains from a quartzite associated with a metavolcanic sequence (i.e. Montauban Group) with a maximum depositional age of c. 1.44 Ga. In contrast, the c.1.85 Ga age peak is observed from recycled zircon grains in metasediments with maximum depositional ages between 1.2 and 1.3 Ga. The suprachondritic Hf isotope composition in detrital zircon grains of the 1.46 Ga and 1.62 Ga age populations records juvenile crustal growth during peri-Laurentian accretionary orogenesis related to the Pinwarian (1.4–1.5 Ga) and Mazatzalian–Labradorian (1.6–1.7 Ga) events. The detrital zircon grains associated with Penokean–Makkovikian (1.8–1.9 Ga) source rocks record reworking of c. 2.7 Ga continental crust derived from a near-chondritic mantle reservoir. Overall, crust-forming and basement reworking events associated with accretionary orogenesis in southeastern Laurentia are retained in the detrital zircon load of Precambrian basins even after the terminal Grenvillian collision and assembly of Rodinia.


Geology ◽  
2021 ◽  
Author(s):  
Jacob A. Mulder ◽  
Peter A. Cawood

Most recent models of continental growth are based on large global compilations of detrital zircon ages, which preserve a distinctly episodic record of crust formation over billion-year timescales. However, it remains unclear whether this uneven distribution of zircon ages reflects a true episodicity in the generation of continental crust through time or is an artifact of the selective preservation of crust isolated in the interior of collisional orogens. We address this issue by analyzing a new global compilation of monazite ages (n >100,000), which is comparable in size, temporal resolution, and spatial distribution to the zircon continental growth record and unambiguously records collisional orogenesis. We demonstrate that the global monazite and zircon age distributions are strongly correlated throughout most of Earth history, implying a link between collisional orogenesis and the preserved record of continental growth. Our findings support the interpretation that the continental crust provides a preservational, rather than generational, archive of crustal growth.


Author(s):  
Sebastián Oriolo ◽  
Mathias Hueck ◽  
Pedro Oyhantçabal ◽  
Siegfried Siegesmund
Keyword(s):  

2021 ◽  
Author(s):  
M.S. Stewart ◽  
et al.

<div>Supplemental Material. Item S1: Geological map of the Lau Basin at 1:1,000,000 scale. Item S2: Geological map of the Mangatolu Triple Junction at 1:200,000 scale. Item S3: Cruise listing and data sources. Item S4: Ground-truthing dataset for the geological map of the Lau Basin.<br></div>


Sign in / Sign up

Export Citation Format

Share Document