scholarly journals Index of rigidity of differential equations and Euler characteristic of their spectral curves

2021 ◽  
Vol 162 ◽  
pp. 104060
Author(s):  
Kazuki Hiroe
2019 ◽  
Vol 4 (1) ◽  
Author(s):  
Kohei Iwaki ◽  
Tatsuya Koike ◽  
Yumiko Takei

Abstract We show that each member of the confluent family of the Gauss hypergeometric equations is realized as quantum curves for appropriate spectral curves. As an application, relations between the Voros coefficients of those equations and the free energy of their classical limit computed by the topological recursion are established. We will also find explicit expressions of the free energy and the Voros coefficients in terms of the Bernoulli numbers and Bernoulli polynomials. Communicated by: Youjin Zhang


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Michał Ławniczak ◽  
Pavel Kurasov ◽  
Szymon Bauch ◽  
Małgorzata Białous ◽  
Afshin Akhshani ◽  
...  

AbstractThe Euler characteristic i.e., the difference between the number of vertices |V| and edges |E| is the most important topological characteristic of a graph. However, to describe spectral properties of differential equations with mixed Dirichlet and Neumann vertex conditions it is necessary to introduce a new spectral invariant, the generalized Euler characteristic $$\chi _G:= |V|-|V_D|-|E|$$ χ G : = | V | - | V D | - | E | , with $$|V_D|$$ | V D | denoting the number of Dirichlet vertices. We demonstrate theoretically and experimentally that the generalized Euler characteristic $$\chi _G$$ χ G of quantum graphs and microwave networks can be determined from small sets of lowest eigenfrequencies. If the topology of the graph is known, the generalized Euler characteristic $$\chi _G$$ χ G can be used to determine the number of Dirichlet vertices. That makes the generalized Euler characteristic $$\chi _G$$ χ G a new powerful tool for studying of physical systems modeled by differential equations on metric graphs including isoscattering and neural networks where both Neumann and Dirichlet boundary conditions occur.


Sign in / Sign up

Export Citation Format

Share Document