scholarly journals Voros coefficients for the hypergeometric differential equations and Eynard–Orantin’s topological recursion: Part II: For confluent family of hypergeometric equations

2019 ◽  
Vol 4 (1) ◽  
Author(s):  
Kohei Iwaki ◽  
Tatsuya Koike ◽  
Yumiko Takei

Abstract We show that each member of the confluent family of the Gauss hypergeometric equations is realized as quantum curves for appropriate spectral curves. As an application, relations between the Voros coefficients of those equations and the free energy of their classical limit computed by the topological recursion are established. We will also find explicit expressions of the free energy and the Voros coefficients in terms of the Bernoulli numbers and Bernoulli polynomials. Communicated by: Youjin Zhang

2021 ◽  
Vol 19 (1) ◽  
pp. 869-877
Author(s):  
Minyoung Ma ◽  
Dongkyu Lim

Abstract In this paper, the authors study the poly-Bernoulli numbers of the second kind, which are defined by using polyexponential functions introduced by Kims. Also by using unipoly function, we study the unipoly Bernoulli numbers of the second kind, which are attached to an arithmetic function. We derive their explicit expressions and some identities involving poly-Bernoulli numbers of the second kind and unipoly Bernoulli numbers of the second kind.


2004 ◽  
Vol 2004 (7) ◽  
pp. 613-623 ◽  
Author(s):  
Gabriella Bretti ◽  
Pierpaolo Natalini ◽  
Paolo E. Ricci

We first introduce a generalization of the Bernoulli polynomials, and consequently of the Bernoulli numbers, starting from suitable generating functions related to a class of Mittag-Leffler functions. Furthermore, multidimensional extensions of the Bernoulli and Appell polynomials are derived generalizing the relevant generating functions, and using the Hermite-Kampé de Fériet (or Gould-Hopper) polynomials. The main properties of these polynomial sets are shown. In particular, the differential equations can be constructed by means of the factorization method.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Waseem A. Khan ◽  
Ghulam Muhiuddin ◽  
Abdulghani Muhyi ◽  
Deena Al-Kadi

AbstractRecently, Kim et al. (Adv. Differ. Equ. 2020:168, 2020) considered the poly-Bernoulli numbers and polynomials resulting from the moderated version of degenerate polyexponential functions. In this paper, we investigate the degenerate type 2 poly-Bernoulli numbers and polynomials which are derived from the moderated version of degenerate polyexponential functions. Our degenerate type 2 degenerate poly-Bernoulli numbers and polynomials are different from those of Kim et al. (Adv. Differ. Equ. 2020:168, 2020) and Kim and Kim (Russ. J. Math. Phys. 26(1):40–49, 2019). Utilizing the properties of moderated degenerate poly-exponential function, we explore some properties of our type 2 degenerate poly-Bernoulli numbers and polynomials. From our investigation, we derive some explicit expressions for type 2 degenerate poly-Bernoulli numbers and polynomials. In addition, we also scrutinize type 2 degenerate unipoly-Bernoulli polynomials related to an arithmetic function and investigate some identities for those polynomials. In particular, we consider certain new explicit expressions and relations of type 2 degenerate unipoly-Bernoulli polynomials and numbers related to special numbers and polynomials. Further, some related beautiful zeros and graphical representations are displayed with the help of Mathematica.


2003 ◽  
Vol 2003 (3) ◽  
pp. 155-163 ◽  
Author(s):  
Pierpaolo Natalini ◽  
Angela Bernardini

A generalization of the Bernoulli polynomials and, consequently, of the Bernoulli numbers, is defined starting from suitable generating functions. Furthermore, the differential equations of these new classes of polynomials are derived by means of the factorization method introduced by Infeld and Hull (1951).


2009 ◽  
Vol 2009 ◽  
pp. 1-8 ◽  
Author(s):  
Taekyun Kim ◽  
Seog-Hoon Rim ◽  
Byungje Lee

By the properties ofp-adic invariant integral onℤp, we establish various identities concerning the generalized Bernoulli numbers and polynomials. From the symmetric properties ofp-adic invariant integral onℤp, we give some interesting relationship between the power sums and the generalized Bernoulli polynomials.


Symmetry ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 675 ◽  
Author(s):  
Serkan Araci ◽  
Waseem Khan ◽  
Kottakkaran Nisar

We aim to introduce arbitrary complex order Hermite-Bernoulli polynomials and Hermite-Bernoulli numbers attached to a Dirichlet character χ and investigate certain symmetric identities involving the polynomials, by mainly using the theory of p-adic integral on Z p . The results presented here, being very general, are shown to reduce to yield symmetric identities for many relatively simple polynomials and numbers and some corresponding known symmetric identities.


2017 ◽  
Vol 9 (5) ◽  
pp. 73
Author(s):  
Do Tan Si

We show that a sum of powers on an arithmetic progression is the transform of a monomial by a differential operator and that its generating function is simply related to that of the Bernoulli polynomials from which consequently it may be calculated. Besides, we show that it is obtainable also from the sums of powers of integers, i.e. from the Bernoulli numbers which in turn may be calculated by a simple algorithm.By the way, for didactic purpose, operator calculus is utilized for proving in a concise manner the main properties of the Bernoulli polynomials. 


2000 ◽  
Vol 14 (11) ◽  
pp. 1179-1185
Author(s):  
B. I. SADOVNIKOV ◽  
N. G. INOZEMTSEVA ◽  
V. I. INOZEMTSEV

The thermodynamics of an inhomogeneous 1D Heisenberg chain with alternating classical and quantum spins is studied. The explicit expressions for the free energy, specific heat, thermal spin correlations and linear susceptibility are found.


2018 ◽  
Vol 20 ◽  
pp. 02001
Author(s):  
M. Razzaghi

In this paper, a new numerical method for solving the fractional differential equations with boundary value problems is presented. The method is based upon hybrid functions approximation. The properties of hybrid functions consisting of block-pulse functions and Bernoulli polynomials are presented. The Riemann-Liouville fractional integral operator for hybrid functions is given. This operator is then utilized to reduce the solution of the boundary value problems for fractional differential equations to a system of algebraic equations. Illustrative examples are included to demonstrate the validity and applicability of the technique.


Symmetry ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 262 ◽  
Author(s):  
Shengfeng Li ◽  
Yi Dong

In this paper, we expound on the hypergeometric series solutions for the second-order non-homogeneous k-hypergeometric differential equation with the polynomial term. The general solutions of this equation are obtained in the form of k-hypergeometric series based on the Frobenius method. Lastly, we employ the result of the theorem to find the solutions of several non-homogeneous k-hypergeometric differential equations.


Sign in / Sign up

Export Citation Format

Share Document