Fluid salinities obtained by infrared microthermometry of opaque minerals: Implications for ore deposit modeling — A note of caution

2006 ◽  
Vol 89 (1-3) ◽  
pp. 284-287 ◽  
Author(s):  
Robert Moritz
1985 ◽  
Vol 22 (1) ◽  
pp. 1-14 ◽  
Author(s):  
Kenneth Maxwell Frater

The competent opaque minerals in the Archaean Golden Grove deposit, pyrite and magnetite, retain pre-regional metamorphic textures despite the lower greenschist-facies grade of metamorphism. The pre-regional metamorphic textures and structures recognized include the development of pyrite and magnetite overgrowths, the replacement of pyrrhotite by pyrite, the conversion of a primary hematite–goethite mineralogy to magnetite and, as a result of thermal metamorphism, further local replacement of pyrrhotite (and sphalerite) by magnetite. Comparisons between pyrite from the Cu-rich mineralization at the base of the deposit and that from the Zn-rich mineralization in the hanging wall indicate that postdepositional modification and recrystallization were more extreme at the base of the deposit. The pre-regional metamorphic textures and structures indicate that pyrite and magnetite overgrowths developed almost immediately after primary precipitation ceased and that overgrowths continued to develop into the late hydrothermal–diagenetic stage of mineralization. A large proportion of the sulphide–Fe-oxide mineralization was formed at shallow depth within the volaniclastic host rocks, but at two horizons (the base and hanging wall) the mineralization formed at or very near the sea floor. These two periods of near sea-floor sulphide precipitation are separated by an oxide-dominated opaque-mineral assemblage, originally hematite–goethite and secondary marcasite but now converted to magnetite and secondary pyrite. The microtextural evidence supports a three-stage evolution of the ore deposit, two sulphide exhalative phases of mineralization separated by a stage of more oxidized hydrothermal activity, or, alternatively, sea-floor weathering during which hematite–goethite formed and marcasite partly replaced earlier formed sulphides.


2019 ◽  
Vol 1 (2) ◽  
pp. 37-41
Author(s):  
Su Kangjie ◽  
Yuan Ya

Author(s):  
Т. В. Самодурова ◽  
О. В. Гладышева ◽  
Н. Ю. Алимова ◽  
Е. А. Бончева

Постановка задачи. Рассмотрена задача моделирования отложения снега во время метелей на автомагистралях с барьерными ограждениями в программе FlowVision . Результаты. В качестве опытного участка рассмотрен участок автомагистрали, проходящий в насыпи. Создана геометрическая модель участка автомагистрали. Обоснованы информационные ресурсы для создания гидродинамической модели обтекания насыпи автомагистрали с барьерными ограждениями снеговетровым потоком во время метелей. Проведено моделирование процесса снегонакопления на опытном участке с использованием программного комплекса FlowVision во время метелей с различными параметрами. Выводы. Сделан вывод о возможности применения программного комплекса FlowVision для совершенствования методики назначения снегозащитных устройств и определения параметров снегоочистки при зимнем содержании автомобильных дорог. Statement of the problem. The problems of snow deposit modeling on the highways with crash barriers during blizzards in the FlowVision was discussed. Results. The highway section passing in the embankment as an experimental section has been considered. The geometric model of the highway section was created. The information resources for designing a hydrodynamic model of a snowflow stream of highway embankment with barriers during blizzard were identified. The modeling of the snow deposit process in the experimental section using the FlowVision software during blizzards with different parameters was carried out. Conclusions. It was concluded that it is possible to use the FlowVision software to improve the methodology for snow protection designing and determining snow removal parameters for winter road maintenance.


Sign in / Sign up

Export Citation Format

Share Document