scholarly journals Trends in LST over the peninsular Spain as derived from the AVHRR imagery data

2018 ◽  
Vol 166 ◽  
pp. 75-93 ◽  
Author(s):  
Makki Khorchani ◽  
Sergio M. Vicente-Serrano ◽  
Cesar Azorin-Molina ◽  
Monica Garcia ◽  
Natalia Martin-Hernandez ◽  
...  
Graellsia ◽  
2001 ◽  
Vol 57 (1) ◽  
pp. 113-131 ◽  
Author(s):  
Reyes Peña-Santiago ◽  
Joaquín Abolafia

1991 ◽  
Vol 12 (4) ◽  
pp. 681-693 ◽  
Author(s):  
R. SANTOLERI ◽  
S. MARULLO ◽  
E. BÖHO

2016 ◽  
Vol 33 ◽  
pp. 36-43 ◽  
Author(s):  
Sri Malahayati Yusuf ◽  
Kukuh Murtilaksono ◽  
Mahendra Harjianto ◽  
Endah Herlina

2021 ◽  
Author(s):  
Edy Irwansyah ◽  
Alexander A. Santoso. Gunawan ◽  
Calvin Surya ◽  
Dewa Ayu Defina Audrey Nathania

2021 ◽  
Author(s):  
Zsófia Adrienn Kovács ◽  
János Mészáros ◽  
Mátyás Árvai ◽  
Annamária Laborczi ◽  
Gábor Szatmári ◽  
...  

<p>The estimation of the soil organic carbon (SOC) content plays an important role for carbon sequestration in the context of climate change and soil degradation. Reflectance spectroscopy has proven to be promising technique for SOC quantification in the laboratory and increasingly from air and spaceborne platforms, where hyperspectral imagery provides great potential for mapping SOC on larger scales.</p><p>The PRISMA (PRecursore IperSpettrale della Missione Applicativa) is an earth-observation satellite with a medium spatial resolution hyperspectral radiometer onboard, developed and maintained by the Italian Space Agency.</p><p>The Pan-European Land Use/ Land Cover Area Frame Survey (LUCAS) topsoil database contains soil physical, chemical and spectral data for most European countries. Based on the LUCAS points located in Hungary, a synthetized spectral dataset was created and matched to the spectral characteristic of PRISMA sensor, later used for building up machine learning based models (random forest, artificial neural network). SOC levels for the sample area was predicted using generated models and mainly PRISMA imagery.</p><p>Our sample imagery data was generated from five consecutive, cloud-free PRISMA images covering 4500 km<sup>2</sup> in the central part of the Great Plain in Hungary, which is one of the most important agricultural areas of the country, used mainly for crops on arable lands. The images were recorded in 2020 February when most croplands are not covered by vegetation therefore our tests were implemented on bare soils.</p><p>We tested the prediction accuracy of hyperspectral imagery data supplemented by various environmental datasets as additional predictor variables in four scenarios: (i) using solely hyperspectral imagery data (ii) spectral imagery data, elevation and its derived parameters (e.g. slope, aspect, topographic wetness index etc.) (iii) spectral imagery data and land-use information and (iv) all aforementioned data in fusion.</p><p>For validation two types of datasets were used: (i) measured data at the observation sites of the Hungarian Soil Information and Monitoring System and (ii) the recently compiled national SOC maps., which provides a suitable and formerly tested spatial representation of the carbon stock of the Hungarian soils.</p><p> </p><p><strong>Acknowledgment:</strong> Our research was supported by the Cooperative Doctoral Programme for Doctoral Scholarships (1015642) and by the OTKA thematic research projects K-131820 and K-124290 of the Hungarian National Research, Development and Innovation Office and by the Scholarship of Human Resource Supporter (NTP-NFTÖ-20-B-0022). Our project carried out using PRISMA Products, © of the Italian Space Agency (ASI), delivered under an ASI License to use.</p>


2021 ◽  
Author(s):  
Adrián García Bruzón ◽  
Patricia Arrogante Funes ◽  
Laura Muñoz Moral

<p>The climate change has turned out to be a determining factor in the development of forest in Spain. Production systems have emitted polluting gases and other particles into the atmosphere, for which some plants have not yet developed adaptation systems. Among the most harmful pollutants for the environment are gases such as nitrous oxides, ozone, particulate matter.</p><p>However, this condition is not the same in Peninsular Spain, and the Balearic Islands since the plant compositions differ in the territory and the bioclimatic, topographic, and anthropic characteristics. Monitoring the vegetation with sufficient spatial and temporal resolution, studying variables conditioning plant health is a challenge from the nature of the variables and the amount of data to be handled. </p><p>The Mediterranean forest is one of the most ecosystem affected by climate change because of usually experimented long periods of drought that, in combination with increased temperatures, can drastically reduce the photosynthetic activity of trees and therefore the biomass of forests.</p><p>That is why the application of environmental technologies based on Remote Sensing (which provide plant health indices from passive sensors on satellite platforms and other variables of interest), Geographic Information Systems (to integrate, process, analyze spatial and temporal data) and machine learning models (which facilitate the extraction of relationships between variables, conditioning factors and predict patterns). </p><p>In this regard, this work's objective is to evaluate the possible effect that different pollutants have on the health of the vegetation, measured from the annual values of the Normalized Difference Vegetation Index (NDVI), in the Mediterranean forests of Peninsular Spain. To achieve this, we are used machine learning techniques using the Random Forest algorithm. The study has also been done with various climatic, topographic, and anthropic variables that characterize the forest to carry it out. </p><p>The results showed that certain variables such as the aridity index had generated the NDVI values and therefore plant development, while others are limiting factors such as the concentration of certain pollutants and the direct relationship between them particulates and NOx. This study can verify how the Random Forest algorithm offers reliable results, even when working with heterogeneous variables. </p>


Sign in / Sign up

Export Citation Format

Share Document