balearic islands
Recently Published Documents


TOTAL DOCUMENTS

1023
(FIVE YEARS 212)

H-INDEX

48
(FIVE YEARS 6)

2022 ◽  
Vol 12 ◽  
Author(s):  
Carla López-Causapé ◽  
Pablo A. Fraile-Ribot ◽  
Santiago Jiménez-Serrano ◽  
Gabriel Cabot ◽  
Ester del Barrio-Tofiño ◽  
...  

Objective: To analyze the SARS-CoV-2 genomic epidemiology in the Balearic Islands, a unique setting in which the course of the pandemic has been influenced by a complex interplay between insularity, severe social restrictions and tourism travels.Methods: Since the onset of the pandemic, more than 2,700 SARS-CoV-2 positive respiratory samples have been randomly selected and sequenced in the Balearic Islands. Genetic diversity of circulating variants was assessed by lineage assignment of consensus whole genome sequences with PANGOLIN and investigation of additional spike mutations.Results: Consensus sequences were assigned to 46 different PANGO lineages and 75% of genomes were classified within a VOC, VUI, or VUM variant according to the WHO definitions. Highest genetic diversity was documented in the island of Majorca (42 different lineages detected). Globally, lineages B.1.1.7 and B.1.617.2/AY.X were identified as the 2 major lineages circulating in the Balearic Islands during the pandemic, distantly followed by lineages B.1.177/B.1.177.X. However, in Ibiza/Formentera lineage distribution was slightly different and lineage B.1.221 was the third most prevalent. Temporal distribution analysis showed that B.1 and B.1.5 lineages dominated the first epidemic wave, lineage B.1.177 dominated the second and third, and lineage B.1.617.2 the fourth. Of note, lineage B.1.1.7 became the most prevalent circulating lineage during first half of 2021; however, it was not associated with an increased in COVID-19 cases likely due to severe social restrictions and limited travels. Additional spike mutations were rarely documented with the exception of mutation S:Q613H which has been detected in several genomes (n = 25) since July 2021.Conclusion: Virus evolution, mainly driven by the acquisition and selection of spike substitutions conferring biological advantages, social restrictions, and size population are apparently key factors for explaining the epidemic patterns registered in the Balearic Islands.


GCdataPR ◽  
2021 ◽  
Author(s):  
Ruixiang SHI ◽  
Chuang LIU
Keyword(s):  

2021 ◽  
Vol 8 ◽  
Author(s):  
Miguel Agulles ◽  
Gabriel Jordà ◽  
Piero Lionello

The fate of the beaches around the world has paramount importance as they are one of the main assets for touristic activities and act as a natural barrier for coastal protection in front of marine storms. Climate change could put them at risk as sea levels rise and changes in the wave characteristics may dramatically modify their shape. In this work, a new methodology has been developed to determine the flooding of sandy beaches due to changes in sea level and waves. The methodology allows a cost-effective and yet accurate estimation of the wave runup for a wide range of beach equilibrium profiles and for different seagrass coverage. This, combined with regional projections of sea level and wave evolution, has allowed a quantification of the future total water level and coastline retreat for 869 beaches across the Balearic Islands for the next decades as a function of greenhouse gases emission scenario. The most pessimistic scenario (RCP8.5) at the end of the century yields an averaged percentage of flooded area of 66% under mean conditions which increases up to 86% under extreme conditions. Moreover, 72 of the 869 beaches of the region would permanently disappear while 314 would be completely flooded during storm episodes. Under a moderate scenario of emissions (RCP4.5), 37 beaches would permanently disappear while 254 would disappear only during storm episodes. In both cases, the average permanent loss of beach surface at the end of the century would be larger than 50%, rising over 80% during storm conditions. The results obtained for the Balearic Islands can be extrapolated to the rest of the Mediterranean as the beaches in all the regions have similar characteristics and will be affected by similar changes in sea level and wave climate. These projections indicate that adaptation plans for beach areas should be put in place as soon as possible.


PhytoKeys ◽  
2021 ◽  
Vol 186 ◽  
pp. 139-158
Author(s):  
Llorenç Sáez ◽  
Faruk Bogunić ◽  
Salvatore Cambria ◽  
Jesús Riera ◽  
Sandro Bogdanović

The name Thymus humifusus var. aureopunctatus, described from Bosnia and Herzegovina, is lectotypified, and its taxonomic value is discussed. Thymus richardii subsp. richardii is currently considered an endemic subspecies common to Mallorca (Balearic Islands) and Bosnia and Herzegovina from the Balkan Peninsula. Specimens identified as Th. richardii from both Balearic Islands and Bosnia and Herzegovina were studied to determine if they are indeed the same taxonomic entity. Detailed micromorphological observations and morphometric analysis, suggest that the Balkan plants (Th. humifusus var. aureopunctatus) and the Majorcan populations (Th. richardii subsp. richardii) are clearly separate entities. For the former name, based on morphological, phytochemical, biogeographical and present results, we propose the subspecific rank, as Th. richardii subsp. aureopunctatuscomb. & stat. nov. Full descriptions of all five subspecies currently accepted within Th. richardii are provided.


Author(s):  
Mikel Bengoa ◽  
Andreu Rotger ◽  
Raúl Luzón ◽  
Carlos Barceló

Abstract Mosquitoes are vectors of several diseases of medical concern such as malaria or dengue and can also negatively affect tourism and the life-quality of the neighbourhood. The species Aedes mariae (Sergent and Sergent, 1903) is a poorly studied mosquito that breeds in rock-pools of the Mediterranean coast. General Linear Mixed Models (GLMM) were used to determine drivers affecting the presence and abundance of this species. Abiotic and biotic factors were recorded in rock-pools with the presence of Ae. mariae sub-adults across a supralittoral area of Majorca Island (Balearic Islands, Spain) from July 2018 to June 2019. We tested how abiotic factors affected the presence of larvae, while the biotic factors were used to check their effect on larvae abundance. human landing collection was also conducted to assess the adult activity of this species. Valuable data were recorded to improve our knowledge about the bioecology of Ae. mariae in a touristic area of the island of Majorca. Salinity and pH were the most explanatory variables for the presence of Ae. mariae larvae. The presence of Posidonia oceanica (L.) Delile 1813 leaves negatively affected the abundance of Ae. mariae larvae while the presence of other fauna enhanced it. Adult females of Ae. mariae were active for 26 min after sunset in June and its host-seeking activity decreased during autumn months. Control methods against this species should be focussed on rock-pools and planning treatments according to tides, waves and precipitation.


2021 ◽  
Vol 21 (4) ◽  
Author(s):  
Cati Torres ◽  
Gabriel Jordà ◽  
Pau de Vílchez ◽  
Raquel Vaquer-Sunyer ◽  
Juan Rita ◽  
...  

2021 ◽  
Vol 154 (3) ◽  
pp. 332-340
Author(s):  
Carles Cardona ◽  
Iván Cortés ◽  
Pere M. Mir ◽  
Lorenzo Gil

Background and aims – Limonium minutum is an endemic plant of the eastern Balearic Islands (Majorca and Minorca), where it grows in coastal rocky habitats. The effects of temperature and salinity on seed germination of Limonium minutum were evaluated in order to set a protocol for recovery of this species in this habitat.Material and methods – Experiments to determine the effect of temperature have been carried out at temperature conditions between 10 and 23°C. Tests to determine the effect of salinity have been evaluated at 18°C with concentrations of 0, 100, 200, 300, and 400 mM of MgCl2, MgSO4, NaCl, and Na2SO4.Key results – Maximum germination took place between 16 and 20°C. Based on the salinity tests, the highest germination values were obtained with distilled water. The use of saline solutions resulted in significant decreases in the germination percentage. However, in almost all treatments, seed germination was observed. The T50 increased at low temperatures and with increasing salt concentration.Conclusion – Limonium minutum has a wide germination temperature range and a high resistance to salinity. After being exposed to different saline solutions, once washed with distilled water, the seeds recover their full germination capacity; therefore, the effect of salts is an osmotic and non-toxic effect for this species. Sowing seeds in late August ensures that the species has an optimal chance to survive in coastal habitats.


Sign in / Sign up

Export Citation Format

Share Document