The Last Glacial Maximum and Heinrich event I on the Iberian Peninsula: A regional climate modelling study for understanding human settlement patterns

2018 ◽  
Vol 170 ◽  
pp. 34-47 ◽  
Author(s):  
Patrick Ludwig ◽  
Yaping Shao ◽  
Martin Kehl ◽  
Gerd-Christian Weniger
2005 ◽  
Vol 337 (10-11) ◽  
pp. 983-992 ◽  
Author(s):  
Masa Kageyama ◽  
Nathalie Combourieu Nebout ◽  
Pierre Sepulchre ◽  
Odile Peyron ◽  
Gerhard Krinner ◽  
...  

2021 ◽  
Author(s):  
Dario Ojeda ◽  
Max John ◽  
Robert L. Hammond ◽  
Riita Savolainen ◽  
Kari Vepsalainen ◽  
...  

The Formicoxenus genus-group comprises six genera within the tribe Crematogastrini. The group is well known for repeated evolution of social parasitism among closely related taxa and cold-adapted species with large distribution ranges in the Nearctic and Palearctic regions. Previous analyses based on nuclear markers (ultraconserved elements, UCEs) and mitochondrial genes suggest close relationship between Formicoxenus Mayr, 1855, Leptothorax Mayr, 1855 and Harpagoxenus Forel, 1893. However, scant sampling has limited phylogenetic assessment of these genera. Also, previous phylogeographic analyses of L. acervorum (Fabricius, 1793) have been limited to its West-Palearctic range of distribution, which has provided a narrow view on recolonization, population structure and existing refugia of the species. Here, we inferred the phylogenenetic history of genera within the Formicoxenus genus-group and reconstructed the phylogeography of L. acervorum with more extensive sampling. We employed four datasets consisting of whole genomes and sequences of the COI. The topologies of previous nuclear and our inferences based on mitochondrial genomes were overall congruent. Further, Formicoxenus may not be monophyletic. We found several monophyletic lineages that do not correspond to the current species described within Leptothorax, especially in the Nearctic region. We identified a monophyletic L. acervorum lineage that comprises both Nearctic and Palearctic locations. The most recent expansion within L. acervorum probably occurred within the last 0.5 Ma with isolated populations predating the Last Glacial Maximum (LGM), which are localized in at least two refugial areas (Pyrenean and Northern plateau) in the Iberian Peninsula. The patterns recovered suggest a shared glacial refugium in the Iberian Peninsula with cold-adapted trees that currently share high-altitude environments in this region.


2021 ◽  
Vol 17 (6) ◽  
pp. 2559-2576
Author(s):  
Kim H. Stadelmaier ◽  
Patrick Ludwig ◽  
Pascal Bertran ◽  
Pierre Antoine ◽  
Xiaoxu Shi ◽  
...  

Abstract. During the Last Glacial Maximum (LGM), a very cold and dry period around 26.5–19 kyr BP, permafrost was widespread across Europe. In this work, we explore the possible benefit of using regional climate model data to improve the permafrost representation in France, decipher how the atmospheric circulation affects the permafrost boundaries in the models, and test the role of ground thermal contraction cracking in wedge development during the LGM. With these aims, criteria for possible thermal contraction cracking of the ground are applied to climate model data for the first time. Our results show that the permafrost extent and ground cracking regions deviate from proxy evidence when the simulated large-scale circulation in both global and regional climate models favours prevailing westerly winds. A colder and, with regard to proxy data, more realistic version of the LGM climate is achieved given more frequent easterly winds conditions. Given the appropriate forcing, an added value of the regional climate model simulation can be achieved in representing permafrost and ground thermal contraction cracking. Furthermore, the model data provide evidence that thermal contraction cracking occurred in Europe during the LGM in a wide latitudinal band south of the probable permafrost border, in agreement with field data analysis. This enables the reconsideration of the role of sand-wedge casts to identify past permafrost regions.


2000 ◽  
Vol 37 (5) ◽  
pp. 751-767 ◽  
Author(s):  
M C Reader ◽  
I Fung ◽  
N McFarlane

A passive mineral dust aerosol model based on source strengths deduced from polar ice core dust concentrations is introduced into the Canadian Centre for Climate Modelling and Analysis (CCCma) second-generation atmospheric general circulation model (GCMII) and used to compare features of the fine particle mineral dust aerosol in a last glacial maximum (LGM) simulation to those of a preindustrial Holocene (MOD) dust simulation. The resulting dust optical thickness is 8-16 times greater over most of the globe during the LGM. The model displays several seasonal characteristics observed in present-day satellite observations of dust, such as the summer maximum over the Arabian Sea and the seasonal north-south shift of the Sahara-Sahel plume. Both of these features are also present in the LGM simulation, though there are some noticeable differences in seasonal variation of dust between the last glacial maximum and the preindustrial Holocene. Since the simulated dust lifetimes are very similar for the MOD and LGM climates, it seems that increased LGM dust lifetime is not the major reason for the observed increase in dust concentration in polar ice cores during the LGM relative to the present.


Sign in / Sign up

Export Citation Format

Share Document