heinrich event
Recently Published Documents


TOTAL DOCUMENTS

109
(FIVE YEARS 16)

H-INDEX

32
(FIVE YEARS 2)

2021 ◽  
pp. 1-15
Author(s):  
Mónika Tóth ◽  
Oliver Heiri ◽  
Ildikó Vincze ◽  
Mihály Braun ◽  
Zoltán Szabó ◽  
...  

Abstract Here we provide the first chironomid record and associated summer air-temperature (TVII) reconstruction between ca. 16,800–9100 cal yr BP from Lake Saint Anne (SZA), situated in the Eastern Carpathians. SZA was formed by the youngest volcanic eruption of Ciomadul volcano at ca. 29,600 cal yr BP. Our main goals in this study are to test whether warming after Heinrich event 1 (H1; ca. 16,200 cal yr BP) had similar amplitude to the late glacial warming, while Younger Dryas (YD) summers remained relatively warm in this region of Europe. We found the most remarkable chironomid assemblage change with a TVII increase of ~3.5–3.8°C at ca. 16,350 cal yr BP at SZA, followed by another slight TVII increase of ~0.8–1.0°C at ca. 14,450 cal yr BP. Only very minor temperature variations were recorded between 14,450 cal yr BP and 11,700 cal yr BP, with an unexpected TVII decrease in the Early Holocene. Variations in water depth together with increasing analogue problems and paludification from ca. 14,200 cal yr BP onwards may have influenced the reliability of our paleotemperature record obtained from SZA. In addition, Sphagnum-indicated decreasing pH, and hence decreasing nutrient level, likely overrode the effect of summer air-temperature changes during the Early Holocene, and this may explain the bias in the chironomid-inferred summer air-temperature reconstruction in the Early Holocene section.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Alan Condron ◽  
Jenna C. Hill

AbstractHigh resolution seafloor mapping shows extraordinary evidence that massive (>300 m thick) icebergs once drifted >5,000 km south along the eastern United States, with >700 iceberg scours now identified south of Cape Hatteras. Here we report on sediment cores collected from several buried scours that show multiple plow marks align with Heinrich Event 3 (H3), ~31,000 years ago. Numerical glacial iceberg simulations indicate that the transport of icebergs to these sites occurs during massive, but short-lived, periods of elevated meltwater discharge. Transport of icebergs to the subtropics, away from deep water formation sites, may explain why H3 was associated with only a modest increase in ice-rafting across the subpolar North Atlantic, and implies a complex relationship between freshwater forcing and climate change. Stratigraphy from subbottom data across the scour marks shows there are additional features that are both older and younger, and may align with other periods of elevated meltwater discharge.


Geology ◽  
2021 ◽  
Author(s):  
J.L. Bernal-Wormull ◽  
A. Moreno ◽  
C. Pérez-Mejías ◽  
M. Bartolomé ◽  
A. Aranburu ◽  
...  

Major disruptions in the North Atlantic circulation during the last deglaciation triggered a series of climate feedbacks that influenced the course of Termination I, suggesting an almost synchronous response in the ocean-atmosphere system. We present a replicated δ18O stalagmite record from Ostolo cave in the northern Iberian Peninsula with a robust chronological framework that continuously covers the last deglaciation (18.5–10.5 kyr B.P.). The Ostolo δ18O record, unlike other speleothem records in the region that were related to humidity changes, closely tracks the well-known high-latitude temperature evolution, offering important insights into the structure of the last deglaciation in the Northern Hemisphere. In addition, this new record is accompanied by a clear signal of the expected cooling events associated with the deglacial disruptions in North Atlantic deep convection during Heinrich event 1.


2021 ◽  
Vol 101 ◽  
pp. 4-12
Author(s):  
Florian Fuhrmann ◽  
Klemens Seelos ◽  
Frank Sirocko

AbstractThe climate in central Europe during the last 60 ka is characterized by rapid temperature and moisture changes and strong cold periods (Heinrich events). All these variations are preserved in sediments of marine and also some terrestrial archives. Here we present a continuous, terrestrial sediment record with almost all Greenland stadials and Heinrich events between 60 and 13 ka visible from carbonate roundness of the Eifel Laminated Sediment Archive Dust Stack-20 and CaCO3 data for central Europe. The carbonate roundness data show almost all stadials between 60 and 13 ka. CaCO3 data show a general transport system change with the beginning of Heinrich event 3. Since there are no carbonates west of the Auel Maar, we conclude that the eolian-transported grains were not transported by westerly but easterly winds. These postulated easterly winds during the last glacial maximum are supported by similar findings of previous works.


2021 ◽  
Author(s):  
Philip Hughes ◽  
Neil Glasser ◽  
David Fink ◽  
Jason Dortch ◽  
Reka Fülöp ◽  
...  

<p>Cosmogenic <sup>10</sup>Be and <sup>26</sup>Al exposure ages from 20 erratic samples collected from Cadair Idris (893 m), a mountain in southern Snowdonia, Wales, provide evidence for the timing of deglaciation from summits to cirques at the end of the Late Pleistocene. The summit of the mountain is characterised by intensely modified frost-shattered surfaces that have long been identified as a representing a former nunatak. Numerous glacially-transported quartz boulders on the highest ground indicate that ice overran the summit at some point in the Pleistocene. Two quartz boulders, one with preserved striations, sampled at c. 856 m near the summit of Cadair Idris yielded consistent <sup>10</sup>Be and <sup>26</sup>Al paired exposure ages of 75 ka to 60 ka (using a high-latitude sea level <sup>10</sup>Be spallation production rate of 4.20 at/g/y, scaled by the Lal/Stone scheme). A glacially polished bedrock quartzite outcrop at 735 m gave an age of 17.5 ka. Immediately below this, cirque and down-valley recessional moraine ages, covering an elevation of 480 m to 350 m ranged from 10 to 15 ka respectively.</p><p>These results confirm that Cadair Idris was overridden by the Welsh Ice Cap during marine isotope stage (MIS) 4, when ice was thicker than at the global last glacial maximum (LGM) in MIS 2. This is consistent with findings from northern Snowdonia. The highest Welsh summits, including Cadair Idris, emerged above a thinning Welsh Ice Cap (British Irish Ice Sheet) during the transition from MIS 4 to 3. The summit area above ~800 m then stood as nunataks above the LGM ice sheet surface in MIS 2. The Welsh Ice Cap then rapidly thinned over Cadair Idris at ~20-17 ka based on ages from high-level ice-moulded bedrockThis is supported by more new ages from high-level paired erratics and bedrock samples on several other mountains throughout Snowdonia, leading to a phase of alpine-style deglaciation. Valley glaciers initiated their retreat up-valley from ~17 to 14 ka after Heinrich Event 1. A later phase of glacier stabilisation or still stand formation produced classic cirque moraines near the rim of a present cirque lake basin (480 m elevation) yielding <sup>10</sup>Be ages of 13-10 ka during the Younger Dryas.</p>


2021 ◽  
Author(s):  
Shettima Bukar ◽  
Tilo von Dobeneck ◽  
Frank Lisker

<p>Periodic mass discharges of icebergs from the Laurentide ice-sheet into the North Atlantic Ocean during the last glacial period deposited abundant ice-rafted detritus (IRD) accumulated in sequences of typically six major Heinrich Event layers, each with some tens of cm thickness, at all eastern slopes of the Grand Banks submarine platform of Newfoundland. Compositionally, it is well established that these IRD layers consist of varied rock contents emanating from distinct, but not yet clearly defined bedrock provinces of the Canadian Shield. The, most prominently reported constituent is detrital dolomite, but the entire lithological range of the IRD is much broader. Rock magnetic records, e.g. magnetic susceptibility logs of SE Grand Banks cores, therefore depict complex and partly repeating internal substructures across the Heinrich Event layers owing to distinct successions in IRD lithology over the course of every mass calving event.</p><p>We investigated IRD sieve fractions (1mm – 4cm) of the entire glacial section (550–1054 cm) of SE Grand Banks slope gravity core GeoB 18530-1, sampled in 2.3 cm steps. Therefrom, we identified and classified distinct IRD rock types as well as monocrystalline rock-forming mineral particles, for which we established so far 24 well-defined lithological categories of sedimentary, igneous and metamorphic origin. This initial identification of IRD lithology was performed based on all available visual criteria including texture (crystallinity, grain-size), color and translucency (mineralogy), hardness and surface structures (e.g., cleavage) using a binocular microscope. This rock type classification is now being substantiated by polarized light microscopy of exemplary thin sections created from larger IRD clasts.</p><p>To established cumulative rock magnetic fingerprints of all IRD magnetic mineral assemblages, isothermal remanent magnetization acquisition curves of all sieve fractions as well as individual specimens of all the classified rock types have been measured. These records systematically revealed higher concentrations of magnetic minerals at the tops and bottoms of most Heinrich Event layers and also clear variations in coercivity spectra. This finding is mirrored by the IRD rock count records, where magmatic rock types predominate mostly at Heinrich Event layer boundaries. Preferred deposition of these IRD rock types during the initiation and ending of events and their variation from older to younger events,- highlight repetitive patterns in the cyclic Laurentide ice-sheet collapses to be further explored.</p>


2021 ◽  
Author(s):  
Thomas Extier ◽  
Katharina Six ◽  
Bo Liu ◽  
Tatiana Ilyina

<p>The Last Deglaciation (21-10 ka) is the most recent transition from a glacial to interglacial state. It is characterized by a pronounced sea level change of 95 m resulting in flooding of land areas and changes of coastlines. This period is also marked by several millennial events like the Heinrich Event 1 with diverse effects on sea level, oceanic circulation, climate and carbon cycle. In case of flooding of land surfaces during periods of sea level rise, carbon and nutrients stored in terrestrial organic matter in vegetation and soils are transferred to the ocean, potentially impacting the global ocean biogeochemical cycle and the uptake/release of CO<sub>2</sub> once being remineralized. Changes in the ocean biogeochemical cycles are also indirectly related to the poorly constrained stoichiometry and remineralization time-scales of terrestrial organic matter, which both differ from the well-known parameters for marine organic matter.</p><p>We present here the first coupled transient simulation over the Last Deglaciation using the global ocean biogeochemical model HAMOCC (HAMburg Ocean Carbon Cycle) as part of the paleo-version of the MPI-ESM (Max Planck Institute Earth System Model) to study the impact of terrestrial organic matter input on the ocean biogeochemical cycle and oceanic CO<sub>2</sub> fluxes during large sea level variations. This model version combines (1) a fully interactive adaptation of the ocean bathymetry with corresponding changes of the land-sea distribution, (2) a transient river routing and (3) the land-sea terrestrial organic matter transfer after flooding. Our simulation provides new insights on the land carbon inputs to the ocean carbon inventory (water column and sediment) due to flooding, with 170 GtC between 21-10 ka, of which 21.1 GtC and 36.8 GtC are within two 1000 years large freshwater discharge events (between 15-14 ka and 12-11 ka). These inputs of carbon rich material to the ocean during flooding events have however only a local effect on ocean CO<sub>2</sub> outgassing, the global ocean remaining a sink of CO<sub>2</sub>. To infer the response of CO<sub>2</sub> fluxes in this context, sensitivity experiments can be performed during the type of Heinrich event (15-14 ka) to evaluate and better constrain the terrestrial organic matter remineralization parameters.</p>


2021 ◽  
pp. 1-17
Author(s):  
Carlos Pérez-Mejías ◽  
Ana Moreno ◽  
Juan Bernal-Wormull ◽  
Isabel Cacho ◽  
M. Cinta Osácar ◽  
...  

Abstract This study examines the first precisely dated and temporally highly resolved speleothem record from Iberia that reconstructs the Oldest Dryas (OD). The onset of cold conditions in the study area, contemporary with the beginning of Heinrich Stadial 1, is recorded at 18.13 ± 0.08 ka, with a pronounced drop of 6.1‰ in δ13C in 250 years. Henceforth, stadial conditions depict a period of instability in the Atlantic Meridional Overturning Circulation, peaking in freshwater input from iceberg melting during Heinrich Event 1. Anomalies in the δ18O of the stalagmite attributed to such a freshwater event are found from 16.17 to 15.89 ka. Such absolute dates given to the onset of the OD in Iberia and to the main iceberg discharges are reliable anchor points for non-absolute chronologies. Two periods are identified in the OD: OD-a (18.13–16.17 ka) is characterized by wet conditions and a faster growth rate, and OD-b (15.89–14.81 ka) exhibits relative dryness and a slower growth rate. The sudden release of fresh water is considered to be the reason for the disruption of rainfall patterns in eastern Iberia. The present study also highlights the existence of heterogeneous and complex hydrological conditions during the OD in Iberia when both Atlantic and Mediterranean realms are considered.


2020 ◽  
pp. 1-13
Author(s):  
Jesse Velay-Vitow ◽  
W. Richard Peltier ◽  
Gordan R. Stuhne

Abstract The ocean floor sedimentological signature of Heinrich event 3 (H3) is markedly different from that of other Heinrich events that are known to have originated in Hudson Strait. It has therefore been suggested that the H3 contribution to iceberg flux may have been delivered by ice streams located in the eastern sector of the North Atlantic, from the Fennoscandian or British Isles ice sheets. To investigate this possibility and whether the instability involved may have been tidally induced, as seems to have been the case for H1, we consider several eastern Atlantic sector possibilities: a hypothetical Barents Sea ice stream, the Norwegian ice stream, and the Irish Sea ice stream. We find that the extremely high amplitude of the M2 tidal constituent in the western North Atlantic that appears to have forced H1 did not exist in the northeastern Atlantic. This suggests that, with one possible exception, if destabilized ice streams in this region did contribute to H3, tidal forcing was most probably not the cause. The single exception to this general conclusion may be the Irish Sea ice stream, and we comment on the probability of a contribution to H3 from this source.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
David Domínguez-Villar ◽  
Juan A. Vázquez-Navarro ◽  
Kristina Krklec ◽  
Sonja Lojen ◽  
José A. López-Sáez ◽  
...  

Abstract The controls that affect the structure and timing of terminations are still poorly understood. We studied a tufa deposit from the Iberian Peninsula that covers Termination II (T-II) and whose chronology was synchronized to speleothem records. We used the same chronology to synchronize ocean sediments from the North Atlantic to correlate major climate events in a common timescale. We identify two stages within T-II. The first stage started with the increase of boreal summer integrated solar insolation, and during this stage three millennial climate oscillations were recorded. These oscillations resulted from complex ocean–atmosphere interactions in the Nordic seas, caused by the progressive decay of Northern Hemisphere ice-sheets. The second stage commenced after a glacial outburst that caused the collapse of the Thermohaline Circulation, a massive Heinrich event, and the onset of the Bipolar Seesaw Mechanism (BSM) that eventually permitted the completion of T-II. The pace of the millennial oscillations during the first stage of T-II controlled the onset of the second stage, when the termination became a non-reversible and global phenomenon that accelerated the deglaciation. During the last the two terminations, the BSM was triggered by different detailed climate interactions, which suggests the occurrence of different modes of terminations.


Sign in / Sign up

Export Citation Format

Share Document