Seismic stratigraphic record of transition from Mesozoic subduction to continental breakup in the Zealandia sector of eastern Gondwana

2014 ◽  
Vol 26 (3-4) ◽  
pp. 1060-1078 ◽  
Author(s):  
François Bache ◽  
Nick Mortimer ◽  
Rupert Sutherland ◽  
Julien Collot ◽  
Pierrick Rouillard ◽  
...  
2021 ◽  
Author(s):  
Craig Magee ◽  
Matthew Reeve ◽  
Chris Jackson ◽  
Rebecca Bell ◽  
Ian Bastow

Continental breakup involves a transition from rapid, fault-controlled syn-rift subsidence to relatively slow, post-breakup subsidence induced lithospheric cooling. Yet the stratigraphic record of many rifted margins contain syn-breakup unconformities, indicating episodes of uplift and erosion interrupt this transition. This uplift has been linked to mantle upwelling, depth-dependent extension, and/or isostatic rebound. Deciphering the breakup processes recorded by these unconformities and their related rock record is difficult because associated erosion commonly removes the strata that help constrain the onset and duration of uplift. We examine three major breakup-related unconformities and intervening rock record in the Lower Cretaceous succession of the Gascoyne and Cuvier margins, offshore NW Australia, using seismic reflection and borehole data. These data show the breakup unconformities are disconformable (non-erosive) in places and angular (erosive) in others. Our recalibration of palynomorph ages from rocks underlying and overlying the unconformities shows: (i) the lowermost unconformity developed between 134.98–133.74 Ma (Intra-Valanginian), probably during the localisation of magma intrusion within continental crust and consequent formation of continent-ocean transition zones (COTZ); (2) the middle unconformity formed between ~134–133 Ma (Top Valanginian), possibly coincident with breakup of continental crust and generation of new magmatic (but not oceanic) crust within the COTZs; and (iii) the uppermost unconformity likely developed between ~132.5–131 Ma (i.e. Intra-Hauterivian), coincident with full breakup of continental lithosphere and the onset of seafloor spreading. During unconformity formation, uplift was focused along the continental rift flanks, likely reflecting landward flow of lower crustal and/or lithospheric mantle from beneath areas of localised extension towards the continent (i.e. depth-dependent extension). Our work supports the growing consensus that the ‘breakup unconformity’ is not always a single stratigraphic surface marking the onset of seafloor spreading; multiple unconformities may form and reflect a complex history of uplift and subsidence during the development of continent-ocean transition.


2022 ◽  
Author(s):  
Matthew T. Reeve ◽  
Craig Magee ◽  
Christopher A‐L. Jackson ◽  
Rebecca E. Bell ◽  
Ian D. Bastow

2018 ◽  
Author(s):  
Rachel L. Kubina ◽  
◽  
Carol M. Dehler ◽  
Carol M. Dehler ◽  
Adolph Yonkee ◽  
...  

2020 ◽  
Author(s):  
Joshua Zimmt ◽  
◽  
S. Holland ◽  
Charles R. Marshall ◽  
Seth Finnegan
Keyword(s):  

2021 ◽  
Vol 114 (1) ◽  
Author(s):  
Jérémy Ragusa ◽  
Lina Maria Ospina-Ostios ◽  
Pascal Kindler ◽  
Mario Sartori

AbstractThe Voirons Flysch (Caron in Eclogae Geologicae Helvetiae 69:297–308, 1976), is a flysch sequence aggregated into the sedimentary accretionary prism of the Chablais and Swiss Prealps. Its palaeogeographic location is still debated (South Piemont or Valais realm). We herein present a stratigraphic revision of the westernmost unit of the former Gurnigel Nappe sensu Caron (Eclogae Geologicae Helvetiae 69:297–308, 1976): the Voirons Flysch. This flysch is subdivided into three lithostratigraphic units at the formation level (the Voirons Sandstone, the Vouan Conglomerate, the Boëge Marl), with an additional unit (Bruant Sandstone) of uncertain attribution, ranging from the early Eocene to probably the late Eocene. We further propose a new model of the depositional setting of the deep-sea of the Voirons Flysch based on palaeocurrent directions, the overall geometry and sedimentary features. This model depicts an eastward deflected deep-sea fan. The stratigraphic record of the proximal part of this fan is fairly complete in the Voirons area, whereas its most distal part is only represented by one small exposure of thinly bedded sandstones in the Fenalet quarry. The stratigraphic evolution of the Voirons Flysch shows two major disruptions of the detrital sedimentation at the transition between Voirons Sandstone—Vouan Conglomerate and Vouan Conglomerate—Boëge Marl. The cause of these disturbances has to be constrained in the framework of the palaeogeographic location of the Voirons Flysch.


Sign in / Sign up

Export Citation Format

Share Document