early paleozoic
Recently Published Documents


TOTAL DOCUMENTS

1090
(FIVE YEARS 285)

H-INDEX

72
(FIVE YEARS 8)

2022 ◽  
Vol 369 ◽  
pp. 106520
Author(s):  
Yanfei Chen ◽  
Zeming Zhang ◽  
Xuanhua Chen ◽  
Richard M. Palin ◽  
Zuolin Tian ◽  
...  

2022 ◽  
Author(s):  
James W. Sears

ABSTRACT A robust, geology-based Proterozoic continental assembly places the northern and eastern margins of the Siberian craton against the southwestern margins of Laurentia in a tight, spoon-in-spoon conjugate fit. The proposed assembly began to break apart in late Neoproterozoic and early Paleozoic time. Siberia then drifted clockwise along the Laurussian margin on coast-parallel transforms until suturing with Europe in late Permian time. The proposed drift path is permitted by a geocentric axial dipole (GAD) magnetic field from Silurian to Permian time. However, the Proterozoic reconstruction itself is not permitted by GAD. Rather, site-mean paleomagnetic data plot ted on the reconstruction suggest a multipolar Proterozoic dynamo dominated by a quadrupole. The field may have resembled that of present-day Neptune, where, in the absence of a large solid inner core, a quadrupolar magnetic field may be generated within a thin spherical shell near the core-mantle boundary. The quadrupole may have dominated Earth’s geomagnetic field until early Paleozoic time, when the field became erratic and transitioned to a dipole, which overwhelmed the weaker quadrupole. The dipole then established a strong magnetosphere, effectively shielding Earth from ultraviolet-B (UV-B) radiation and making the planet habitable for Cambrian fauna.


2022 ◽  
Author(s):  
Lei Wu ◽  
et al.

Figure S1: Alternative sets of mean poles. Table S1: Paleomagnetic data from Domeier (2016). Table S2–4: Alternative mean poles for Gondwana, Laurentia and Baltica.


2022 ◽  
Author(s):  
Lei Wu ◽  
et al.

Figure S1: Alternative sets of mean poles. Table S1: Paleomagnetic data from Domeier (2016). Table S2–4: Alternative mean poles for Gondwana, Laurentia and Baltica.


2022 ◽  
Author(s):  
Jérémie Soldner ◽  
Yingde Jiang ◽  
et al.

Table S1: U-Pb LA-ICP-MS data for zircons from granulite and amphibolite. Table S2: U-Pb LA-ICP-MS data for zircons from metapelite and metapsammite. Table S3: Zircon trace-element compositions from granulite and amphibolite. Table S4: Hf isotopic compositions for zircons from granulite and amphibolite.


2022 ◽  
Author(s):  
Jérémie Soldner ◽  
Yingde Jiang ◽  
et al.

Table S1: U-Pb LA-ICP-MS data for zircons from granulite and amphibolite. Table S2: U-Pb LA-ICP-MS data for zircons from metapelite and metapsammite. Table S3: Zircon trace-element compositions from granulite and amphibolite. Table S4: Hf isotopic compositions for zircons from granulite and amphibolite.


2021 ◽  
Vol 112 ◽  
pp. 103573
Author(s):  
M.F. Quiroga ◽  
A. Ortiz ◽  
N. Salado Paz ◽  
R. Becchio ◽  
B. Alfaro ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document